The equivalent resistance of n resistors connected in parallel is given by

(1)
In our problem, the resulting resistance of the 5 pieces connected in parallel is

, and since the 5 pieces are identical, their resistance R is identical, so we can rewrite (1) as

From which we find

.
So, each piece of wire has a resistance of

. Before the wire was cut, the five pieces were connected as they were in series. The equivalent resistance of a series of n resistors is given by

So if we apply it at our case, we have

therefore, the resistance of the original wire was

.
This question is incomplete, the complete question is;
The Figure shows a container that is sealed at the top by a moveable piston, Inside the container is an ideal gas at 1.00 atm. 20.0°C and 1.00 L.
"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"
Answer:
the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant
Explanation:
Given that;
P₁ = 1.00 atm
P₂ = ?
V₁ = 1 L
V₂ = 1.60 L
the temperature of the gas is kept constant
we know that;
P₁V₁ = P₂V₂
so we substitute
1 × 1 = P₂ × 1.60
P₂ = 1 / 1.60
P₂ = 0.625 atm
Therefore the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant
Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
In this situation, both of the vehicles turn towards starboard.
By turning to the starboard, or right, side, the vehicles are able to avoid collision. Because waterways are not marked in a manner like roads are, it is necessary to place such conventions of turning in situations where vehicles approach one another head on. If a convention was not in place, the risk of collision would be many times greater. For example, the motorboat operator may turn left, while the PWC operator turns right, resulting in a collision.