You must observe the object twice.
-- Look at it the first time, and make a mark where it is.
-- After some time has passed, look at the object again, and
make another mark at the place where it is.
-- At your convenience, take out your ruler, and measure the
distance between the two marks.
What you'll have is the object's "displacement" during that period
of time ... the distance between the start-point and end-point.
Technically, you won't know the actual distance it has traveled
during that time, because you don't know the route it took.
Not totally sure but i would say a normal? its not refraction or incidence if its perpendicular and i dont think its a mirror if its an imaginary line so yeah normal (normals are always perpendicular to their surface too i think so)
Answer:Why are temperatures higher in summer than in winter?
During the summer, the sun's rays hit the Earth at a steep angle. ... Also, the long daylight hours allow the Earth plenty of time to reach warm temperatures. During the winter, the sun's rays hit the Earth at a shallow angle. These rays are more spread out, which minimizes the amount of energy that hits any given spot.
Answer:
A) Increases by a factor of 2
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Given that mass, m = 2m
Substituting into the equation, we have;
K.E = ½mv²
K.E = ½*2mv²
Cross-multiplying, we have;
2K.E = 2mv²
Hence, if the mass of an object increases by a factor 2, kinetic energy is increased by a factor of 2.
Answer:
The depth is 5.15 m.
Explanation:
Lets take the depth of the pool = h m
The atmospheric pressure ,P = 101235 N/m²
The area of the top = A m²
The area of the bottom = a m²
Given that A= 1.5 a
The force on the top of the pool = P A
The total pressure on the bottom = P + ρ g h
ρ =Density of the water = 1000 kg/m³
The total pressure at the bottom of the pool = (P + ρ g h) a
The bottom and the top force is same
(P + ρ g h) a = P A
P a +ρ g h a = P A
ρ g h a = P A - P a




h=5.15 m
The depth is 5.15 m.