Answer:
208
Explanation:
add it together for the answer
Answer:
The bending of light as it passes from one medium to another is called refraction. The angle and wavelength at which the light enters a substance and the density of that substance determine how much the light is refracted. The bending occurs because light travels more slowly in a denser medium.
hope this helped :))
A.) Electromagnetic Current
please mark me as the brainliest
We have to calculate the impulse of a hockey puck.
Imp = m * ( v 1 - v 2 ) = m * Δ v
v 1 = - 10 i m/s,
v 2 = ( 20 * cos 40° ) i + ( 20 * sin 40° ) j =
= ( 20 * 0.766 ) i + ( 20 * 0.64278 ) j = ( 15.32 i + 12.855 j ) m/s
Δ v = ( 15.32 i + 12.855 j ) - ( - 10 i ) =
= 15.32 i + 12.855 j + 10 i = 25.32 i + 12.855 j
| Δv | = √ ( 25.32² + 12.855²) = √806.35 = 28.4 m/s
Imp = 0.2 kg * 28.4 m/s = 5.68 N-s
Answer: D ) 5.68 N-s.
<h3>Answer;</h3>
<u>It would make the lens stronger. </u>
<h3>Explanation;</h3>
- The focal length is the distance between the optical center or the center of the lens to the focal point of a convex or concave lens.
- The power of the convex lens is lens ability to undertake refraction or bend light. It is given as the reciprocal of focal length.
- Power of the lens = 1/ f; therefore the smaller the focal length the higher the power and the larger the focal length the lower the power.
- Thus; decreasing the focal length of a convex lens makes the lens stronger.