1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
12

A torque of 35.6 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result

of a directed force combined with a friction force. As a result of the applied torque the angular speed of the wheel increases from 0 to 10.1 rad/s. After 5.90 s the directed force is removed, and the wheel comes to rest 59.0 s later. (a) What is the wheel's moment of inertia (in kg · m2)? kg · m2 (b) What is the magnitude of the torque caused by friction (in N · m)? N · m (c) From the time the directed force is initially applied, how many revolutions does the wheel go through? revolutions
Physics
1 answer:
Varvara68 [4.7K]3 years ago
7 0

(a) 20.8 kg m^2

First of all, we can find the angular acceleration of the wheel when both the directed force and the friction force are acting on it:

\alpha=\frac{\omega_f-\omega_i}{t}

where

\omega_f = 10.1 rad/s is the final angular velocity

\omega_i=0 is the initial angular velocity

t = 5.90 s is the time taken

Substituting,

\alpha=\frac{10.1 rad/s-0}{5.90 s}=1.71 rad/s^2

Now we can find the moment of inertia of the wheel by using the equivalent of Newton's second law for rotational motions:

\tau = I\alpha (1)

where

\tau=35.6 Nm is the torque applied

I is the moment of inertia

\alpha=1.71 rad/s^2 is the angular acceleration

Solving the equation for I,

I=\frac{\tau}{\alpha}=\frac{35.6 Nm}{1.71 rad/s^2}=20.8 kg m^2

(b) -3.5 Nm

In the second part, the directed force is removed, and only the friction force acts on the wheel. The wheel comes to rest after t=59.0 s, so the angular acceleration in this part is

\alpha=\frac{\omega_f-\omega_i}{t}=\frac{0-(10.1 rad/s)}{59.0 s}=-0.17 rad/s^2

And it is negative since it is a deceleration. The moment of inertia of the wheel has not changed, so we can still use eq.(1) to find the torque caused by the friction only:

\tau=I \alpha=(20.8 kg m^2)(-0.17 rad/s^2)=-3.5 Nm

(c) 52.5 revolutions

The total angular displacement covered by the wheel in the first part of the motion is given by:

\omega_f^2 - \omega_i^2 = 2 \alpha_1 \theta_1

where

\omega_f = 10.1 rad/s\\\omega_i = 0\\\alpha_1 = 1.71 rad/s^2

Solving for \theta_1,

\theta_1 = \frac{\omega_f^2-\omega_i^2}{2\alpha_1}=\frac{(10.1 rad/s)^2-0}{2(1.71 rad/s^2)}=29.8 rad

The total angular displacement covered by the wheel in the second part of the motion is given by:

\omega_f^2 - \omega_i^2 = 2 \alpha_2 \theta_2

where

\omega_f = 0 rad/s\\\omega_i = 10.1 rad/s\\\alpha_2 = -0.17 rad/s^2

Solving for \theta_2,

\theta_2 = \frac{\omega_f^2-\omega_i^2}{2\alpha_2}=\frac{0-(10.1 rad/s)^2}{2(-0.17 rad/s^2)}=300.0 rad

So the total angular displacement in radians is

\theta=\theta_1+\theta_2=29.8 rad+300.0 rad=329.8 rad

And since 1 rev = 2\pi rad

the angle convered in revolutions is

\theta=\frac{329.8 rad}{2\pi rad/rev}=52.5 rev

You might be interested in
In the reaction 2H, + O, → H,0, what coeficient should be placed in front of H,0 to balance the reaction?
Vilka [71]
It’s water mate-
hOw rUdE
8 0
3 years ago
Michael Scott is driving through the parking lot and accidentally hits Meredith as she’s walking to her car. If his car makes co
fiasKO [112]
Yes she's dead or in the hospital
6 0
3 years ago
0.10-kilogram model rocket’s engine is designed to deliver an impulse of 6.0 newton-seconds. If the rocket engine burns for 0.75
UkoKoshka [18]

Answer:

8.0 N

Explanation:

Force: This can be defined as the mass of a body and its acceleration. The S.I unit of Force is Newton (N).

Mathematically, Fore is expressed as

F = ma ........................... equation 1

Where F = force, m = mass, a = acceleration.

and

I = mΔv

Δv = I/m ............................ Equation 2

Where I = impulse, m = mass, Δv = change in velocity

Given: I = 6.0 Newton-seconds, m = 0.1 kilogram.

Substituting into equation 2

Δv = 6.0/0.1

Δv = 60 m/s.

But

a = Δv/t

where t = time = 0.75 seconds.

a = 60/0.75

a = 80 m/s²

Substitute the values of a and m into equation 1.

F = 0.1(80)

F = 8.0 N.

Thus the average force produced = 8.0 N

6 0
2 years ago
Three children are riding on the edge of a merry-go-round that is 100 kg, has a 1.60-m radius, and is spinning at 20.0 rpm. The
Kay [80]

Answer:

25.33 rpm

Explanation:

M = 100 kg

m1 = 22 kg

m2 = 28 kg

m3 = 33 kg

r = 1.60 m

f = 20 rpm

Let the new angular speed in rpm is f'.

According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.

Initial angular momentum = final angular momentum

(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =

                                  (1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'

(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'

( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'

2660 = 105 x f'

f' = 25.33 rpm

8 0
2 years ago
Calculate the force at sea level that a boy of mass 50 kg exerts on a chair in which he is sitting.
kogti [31]

As per the question the mass of the boy is 50 kg.

The boy sits on a chair.

We are asked to calculate the force exerted by the boy on the chair at sea level.

The force exerted by boy on the chair while sitting on it is nothing else except the force of gravity of earth i.e the weight of the body .The direction of that force is vertically downward.

At sea level the acceleration due to gravity g = 9.8 m/s^2

Hence the weight of the boy w = mg  [m is the mass of the body]

we have m = 50 kg.

                             Hence w = 50 kg ×9.8 m/s^2

                                             =490 N kg m/s^2

                                              = 490 N

Here newton [N] is the unit of force.





6 0
3 years ago
Read 2 more answers
Other questions:
  • At what distance is the electrostatic force between two protons equal to the weight of one proton?
    10·1 answer
  • Me kitten runs 40 meters in 8 seconds what is his speed?
    8·2 answers
  • 2. In a famous letter to Robert Hooke, Isaac Newton wrote, "If I have seen further it is only by standing on the shoulders of gi
    12·1 answer
  • Please help these with these two questions
    8·1 answer
  • When determining a region's climate, the two main variables considered are the average what? ( They don't have the subject "Scie
    11·1 answer
  • A simple model of a hydrogen atom is a positive point charge +e (representing the proton) at the center of a ring of radius a wi
    5·1 answer
  • When blocking in football, why does a defending lineman often attempt to get his body under that of his opponent and push forwar
    8·2 answers
  • How is it that even light precipitation can still cause the collection of large amounts of water.
    12·1 answer
  • The relative highness or lowness of a sound is called ______. Multiple Choice pitch timbre dynamics octave
    14·1 answer
  • !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!