32 players = 16 matches ( 32/2)
16 players = 8 matches ( 16/2)
8 players = 4 matches (8/2)
4 players = 2 matches ( 4/2)
2 players = 1 match
16 + 8 +4 +2 +1 = 31 matches
Answer:
Center: (-2, 4)
Radius: 4
Step-by-step explanation:
To find the centre and radius, we require to identify g , f and c
By comparing the coefficients of 'like terms' in the given equation with the general form.
2g = 4 → g = 2 , 2f = -8 → f = -4 and c = 4 → center=(−g,−f)=(−2,4)
radius = √22+(−4)2−4= √4+16−4=4
Center: (-2, 4)
Radius: 4
Hope This Helps! :)
Answer:
Step-by-step explanation:
From the given information:
r = 10 cos( θ)
r = 5
We are to find the the area of the region that lies inside the first curve and outside the second curve.
The first thing we need to do is to determine the intersection of the points in these two curves.
To do that :
let equate the two parameters together
So;
10 cos( θ) = 5
cos( θ) = ![\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7D)
![\theta = -\dfrac{\pi}{3}, \ \ \dfrac{\pi}{3}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20-%5Cdfrac%7B%5Cpi%7D%7B3%7D%2C%20%5C%20%5C%20%20%5Cdfrac%7B%5Cpi%7D%7B3%7D)
Now, the area of the region that lies inside the first curve and outside the second curve can be determined by finding the integral . i.e
![A = \dfrac{1}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} (10 \ cos \ \theta)^2 d \theta - \dfrac{1}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \ \ 5^2 d \theta](https://tex.z-dn.net/?f=A%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cint%20%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20%2810%20%5C%20cos%20%5C%20%20%5Ctheta%29%5E2%20d%20%5Ctheta%20-%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cint%20%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20%5C%20%5C%20%205%5E2%20d%20%5Ctheta)
![A = \dfrac{1}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} 100 \ cos^2 \ \theta d \theta - \dfrac{25}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \ \ d \theta](https://tex.z-dn.net/?f=A%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cint%20%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20100%20%5C%20cos%5E2%20%5C%20%20%5Ctheta%20%20d%20%5Ctheta%20-%20%5Cdfrac%7B25%7D%7B2%7D%20%5Cint%20%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20%5C%20%5C%20%20%20d%20%5Ctheta)
![A = 50 \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \begin {pmatrix} \dfrac{cos \ 2 \theta +1}{2} \end {pmatrix} \ \ d \theta - \dfrac{25}{2} \begin {bmatrix} \theta \end {bmatrix}^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}}](https://tex.z-dn.net/?f=A%20%3D%2050%20%5Cint%20%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20%5Cbegin%20%7Bpmatrix%7D%20%20%5Cdfrac%7Bcos%20%5C%202%20%5Ctheta%20%2B1%7D%7B2%7D%20%20%5Cend%20%7Bpmatrix%7D%20%5C%20%5C%20d%20%5Ctheta%20-%20%5Cdfrac%7B25%7D%7B2%7D%20%20%5Cbegin%20%7Bbmatrix%7D%20%5Ctheta%20%20%20%5Cend%20%7Bbmatrix%7D%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D)
![A =\dfrac{ 50}{2} \int \limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}} \begin {pmatrix} {cos \ 2 \theta +1} \end {pmatrix} \ \ d \theta - \dfrac{25}{2} \begin {bmatrix} \dfrac{\pi}{3} - (- \dfrac{\pi}{3} )\end {bmatrix}](https://tex.z-dn.net/?f=A%20%3D%5Cdfrac%7B%2050%7D%7B2%7D%20%5Cint%20%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20%5Cbegin%20%7Bpmatrix%7D%20%20%7Bcos%20%5C%202%20%5Ctheta%20%2B1%7D%20%20%5Cend%20%7Bpmatrix%7D%20%5C%20%5C%20%20%20%20d%20%5Ctheta%20-%20%5Cdfrac%7B25%7D%7B2%7D%20%20%5Cbegin%20%7Bbmatrix%7D%20%20%5Cdfrac%7B%5Cpi%7D%7B3%7D%20-%20%28-%20%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%29%5Cend%20%7Bbmatrix%7D)
![A =25 \begin {bmatrix} \dfrac{sin2 \theta }{2} + \theta \end {bmatrix}^{\dfrac{\pi}{3}}_{\dfrac{\pi}{3}} \ \ - \dfrac{25}{2} \begin {bmatrix} \dfrac{2 \pi}{3} \end {bmatrix}](https://tex.z-dn.net/?f=A%20%3D25%20%20%5Cbegin%20%7Bbmatrix%7D%20%20%5Cdfrac%7Bsin2%20%5Ctheta%20%7D%7B2%7D%20%2B%20%5Ctheta%20%5Cend%20%7Bbmatrix%7D%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D%20%20%20%20%5C%20%5C%20-%20%5Cdfrac%7B25%7D%7B2%7D%20%20%5Cbegin%20%7Bbmatrix%7D%20%20%5Cdfrac%7B2%20%5Cpi%7D%7B3%7D%20%5Cend%20%7Bbmatrix%7D)
![A =25 \begin {bmatrix} \dfrac{sin (\dfrac{2 \pi}{3} )}{2}+\dfrac{\pi}{3} - \dfrac{ sin (\dfrac{-2\pi}{3}) }{2}-(-\dfrac{\pi}{3}) \end {bmatrix} - \dfrac{25 \pi}{3}](https://tex.z-dn.net/?f=A%20%3D25%20%20%5Cbegin%20%7Bbmatrix%7D%20%20%5Cdfrac%7Bsin%20%28%5Cdfrac%7B2%20%5Cpi%7D%7B3%7D%20%29%7D%7B2%7D%2B%5Cdfrac%7B%5Cpi%7D%7B3%7D%20-%20%5Cdfrac%7B%20sin%20%28%5Cdfrac%7B-2%5Cpi%7D%7B3%7D%29%20%7D%7B2%7D-%28-%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%20%5Cend%20%7Bbmatrix%7D%20-%20%5Cdfrac%7B25%20%5Cpi%7D%7B3%7D)
![A = 25 \begin{bmatrix} \dfrac{\dfrac{\sqrt{3}}{2} }{2} +\dfrac{\pi}{3} + \dfrac{\dfrac{\sqrt{3}}{2} }{2} + \dfrac{\pi}{3} \end {bmatrix}- \dfrac{ 25 \pi}{3}](https://tex.z-dn.net/?f=A%20%3D%2025%20%5Cbegin%7Bbmatrix%7D%20%20%20%5Cdfrac%7B%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%20%7D%7B2%7D%20%2B%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%2B%20%5Cdfrac%7B%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%20%7D%7B2%7D%20%2B%20%20%20%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%5Cend%20%7Bbmatrix%7D-%20%5Cdfrac%7B%2025%20%5Cpi%7D%7B3%7D)
![A = 25 \begin{bmatrix} \dfrac{\sqrt{3}}{2 } +\dfrac{2 \pi}{3} \end {bmatrix}- \dfrac{ 25 \pi}{3}](https://tex.z-dn.net/?f=A%20%3D%2025%20%5Cbegin%7Bbmatrix%7D%20%20%20%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B2%20%7D%20%2B%5Cdfrac%7B2%20%5Cpi%7D%7B3%7D%20%20%20%5Cend%20%7Bbmatrix%7D-%20%5Cdfrac%7B%2025%20%5Cpi%7D%7B3%7D)
![A = \dfrac{25 \sqrt{3}}{2 } +\dfrac{25 \pi}{3}](https://tex.z-dn.net/?f=A%20%3D%20%20%20%20%5Cdfrac%7B25%20%5Csqrt%7B3%7D%7D%7B2%20%7D%20%2B%5Cdfrac%7B25%20%5Cpi%7D%7B3%7D)
The diagrammatic expression showing the area of the region that lies inside the first curve and outside the second curve can be seen in the attached file below.
Let,
Harry's age - x then Nick is 7x.
After 6 years, Harry is x+6 and Nick is 7x+6
So, 7x+6= 5(x+6)=> 2x = 30-6X = 12
In 6 years, Harry will be 12+6 = 18 years (Ans)
The combination shows that the numbers of possible live card hands drawn without replacement from a standard deck of 52 playing cards is 2,598,960.
<h3>How to explain the information?</h3>
A permutation is the act of arranging the objects or numbers in order while combinations are the way of selecting the objects from a group of objects or collection such that the order of the objects does not matter.
Since the order does not matter, it means that each hand is a combination of five cards from a total of 52.
We use the formula for combinations and see that there are a total number of C( 52, 5 ) = 2,598,960 possible hands.
Learn more about permutations and combination on:
brainly.com/question/4658834
#SPJ1