Given Information:
Mean SAT score = μ = 1500
Standard deviation of SAT score = σ = 3
00
Required Information:
Minimum score in the top 10% of this test that qualifies for the scholarship = ?
Answer:

Step-by-step explanation:
What is Normal Distribution?
We are given a Normal Distribution, which is a continuous probability distribution and is symmetrical around the mean. The shape of this distribution is like a bell curve and most of the data is clustered around the mean. The area under this bell shaped curve represents the probability.
We want to find out the minimum score that qualifies for the scholarship by scoring in the top 10% of this test.

The z-score corresponding to the probability of 0.90 is 1.28 (from the z-table)

Therefore, you need to score 1884 in order to qualify for the scholarship.
How to use z-table?
Step 1:
In the z-table, find the probability value of 0.90 and note down the value of the that row which is 1.2
Step 2:
Then look up at the top of z-table and note down the value of the that column which is 0.08
Step 3:
Finally, note down the intersection of step 1 and step 2 which is 1.28
The congruent statement and the reason why the triangles are congruent is (b) ΔUVZ ≅ ΔVYX, SSS
<h3>How to determine the congruent statement and the reason?</h3>
From the question, we have the following parameters that can be used in our computation:
Triangles = UVZ and VYX
There are several theorems that make any two triangles to be congruent
One of these theorems is the SSS congruent theorem
The SSS congruent theorem implies that the corresponding sides of the triangles in question are congruent
From the question, we can see that the following corresponding sides on the triangles UVZ and VYX have the same mark
UV and VY
UZ and VX
VZ and YX
This implies that these sides are congruent sides
Hence, the congruent statement on the congruency of the triangles is (b) ΔUVZ ≅ ΔVYX and the reason is by SSS
Read more about congruent triangles at
brainly.com/question/1675117
#SPJ1
I’m not sure if your answer is right but here’s how to solve it
6x+3y=33..........(1)
4x+y=15
y=15-4x.........(2)
substitute value of y from (2) in (1)
6x+3(15-4x)=33
distribute 3 over the bracket
6x+45-12x =33
-6x=33-45
-6x=-12
x=2
plugging this value of x in equation 2 we get
15-4x=y
15-4(2)=y
y=15-8
y=7
Answer is x=2 and y=7