Answer:
A = (2p + 9) (2p - 9)
B = (x - 9) (x - 4)
Step-by-step explanation:
For A : Rewrite 4p^2 as (2p)^2.
(2p)^2−81
Rewrite 81 as 9^2.
(2p)^2−9^2
Since both terms are perfect squares, factor using the difference of squares formula, a^2 − b^2 = ( a + b ) ( a − b ) where a = 2p and b = 9 .
(2p + 9) (2p − 9)
For B : Consider the form x^2 + bx + c . Find a pair of integers whose product is c and whose sum is b . In this case, whose product is 36 and whose sum is − 13 .
-9, -4
(x - 9) (x - 4)
I hope this helps.
Answer:
The probability that none of the meals will exceed the cost covered by your company is 0.2637.
Step-by-step explanation:
A hyper-geometric distribution is used to define the probability distribution of <em>k</em> success in <em>n</em> samples drawn from a population of size <em>N</em> which include <em>K</em> success. Every draw is either a success of failure.
The random variable <em>X</em> = number of meals that will exceed the cost covered by the company.
The random variable <em>X</em> follows a hyper-geometric distribution.
The information provided is:
N = 15
K = 3
n = 5
k = 0
The probability mass function of a hyper-geometric distribution is:

Compute the probability that none of the meals will exceed the cost covered by your company as follows:

Thus, the probability that none of the meals will exceed the cost covered by your company is 0.2637.
Answer:
$1129.93
Step-by-step explanation:
100 - 9.5 = 90.5
8000 - 90.5 = 7909.5
7909.5 ÷ 7 = 1129.93
i hope this helps
Answer:
6000cm
Step-by-step explanation:
multiply all figures given