Answer:
The found acceleration in terms of h and t is:

Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
<h3>
</h3><h3>
Stage 1</h3>
Constant acceleration, starts from rest.
Distance = 
Velocity = 
<h3>Stage 2</h3>
Constant velocity where
Velocity = 
Distance =
<h3>

</h3><h3 /><h3>Stage 3</h3>
Constant deceleration where
Velocity = 
Distance =

<h3>Total Height</h3>
Total height = y₁ + y₂ + y₃
Total height = 
<h3 /><h3>Acceleration</h3>
Find acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²

<span>Pitch and frequency are more or less the same thing - high pitch = high frequency.
The freqency of vibration of a string f = 1/length (L) so as length decreases the frequency increases.</span>
What are the answer choices, if there are any?
<h2>Answer: Gravitational attraction
</h2>
Gravity force causes the clouds of dust and gas to form a protostar. As this <u>attraction force</u> is responsible for gathering and compressing the existing elements in the cloud of gas and dust, heating them during this process.
Then, when the amount of material accumulated by gravitational contraction is large enough, and the temperature and pressure reached high enough, the <u>nuclear fusion</u> process will begin.
To understand it better: The hydrogen nuclei will begin to fuse, generating helium nuclei in the process and releasing huge amounts of energy.
It should be noted that the protostars radiate half of the energy contributed by the gravitational collapse and the other half is invested in heating its core.
Answer: See photo
Explanation: There are a couple of ways to use velocity in an equation in the photo.