1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Westkost [7]
2 years ago
6

someone help pls. Two students, Mia and Peter, leave school to meet at the local coffee shop. Peter decides to jog to the coffee

shop, but also stops at a flower shop along the way. Mia decides to walk from school directly to the coffee shop. They arrive at the coffee shop at the same time, 30 minutes after they leave school.

Physics
1 answer:
cluponka [151]2 years ago
6 0

Answer:

1) The distance further it takes Peter to arrive at the Coffee shop than Mia is 1.24 km

2) Mia's average speed is 6.00 km/hour

Peter's average speed is 8.48 km/hour

4) Mia's average velocity = Peter's average velocity = 6.00 km/hour

Explanation:

The given information from the diagram are;

The distance Peter jogs from school to the flower shop = 2.00 km

The distance Peter jogs from the Flower shop to the Coffee shop = 2.24 km.

The distance Mia walks from school directly to the Coffee shop = 3.00 km

The time it takes both Peter and Mia to arrive at the coffee shop = 30 minutes = 0.5 hour

1) The total distance Peter travels from school to the Coffee shop = 2.00 km + 2.24 km = 4.24 km

The distance Mia travels from school to the Coffee shop = 3.00 km

The distance further it takes Peter to arrive at the Coffee shop than Mia = 4.24 km - 3.00 km = 1.24 km

The distance further it takes Peter to arrive at the Coffee shop than Mia = 1.24 km

2) Average \ speed = \dfrac{Total \ distance \ traveled}{Total \ time \ taken \  in \ the \ journey}

Therefore, \ Mia's \ average \ speed = \dfrac{3.00 \ km}{0.5 \ hour}= 6.00 \ km/hour

Mia's average speed = 6.00 km/hour

Peter's \ average \ speed = \dfrac{4.24 \ km}{0.5 \ hour}= 8.48 \ km/hour

Peter's average speed = 8.48 km/hour

4) Average \ velocicty = \dfrac{Displacement }{Time  \ taken}

The displacement from the School to the Coffee shop is 3.00 km for both Mia and Peter

The time it takes both Peter and Mia to arrive at the Coffee shop from the school is 30 minutes = 0.5 hour

Therefore, \ Mia's \ average \ velocity = \dfrac{3.00 \ km}{0.5 \ hour}= 6.00 \ km/hour

Mia's average velocity = 6.00 km/hour

Peter's \ average \ velocity = \dfrac{3.00 \ km}{0.5 \ hour}= 6.00 \ km/hour

Therefore, Peter's average velocity is also = 6.00 km/hour

You might be interested in
The bending of light as it passes from one medium to the next is
S_A_V [24]
This is called refraction. Some common examples of refraction are a straw appearing bent or cut once it enters water in a glass.
5 0
3 years ago
A ball is launched vertically with an initial speed of y˙0= 50 m/s, and its acceleration is governed by y¨=-g-cDy˙2, where the a
stira [4]

Answer:

Explanation:

Given

acceleration is given by

a=-g-c_Dv^2

where \ddot{y}=a

\dot{y}=v

Also acceleration is given by

a=v\frac{\mathrm{d} v}{\mathrm{d} s}

ds=\frac{v}{a}dv

\int ds=\int \frac{v}{-g-0.001v^2}dv

\Rightarrow Let -g-0.001v^2=t

-0.001\times 2vdv=dt

vdv=-\frac{dt}{0.002}

at\ v_0=50\ m/s,\ t=-g-0.001(50)^2

t=-g-2.5

at v=0,\ t=-g

\int_{0}^{s}ds=\int_{-g}^{-g-2.5}\frac{-dt}{0.002t}

\int_{0}^{s}ds=\int^{-g}_{-g-2.5}\frac{dt}{0.002t}

s=\frac{1}{0.002}lnt|_{-g}^{-g-2.5}

s=\frac{1}{0.002}\ln (\frac{g+2.5}{g})

s=113.608\ m

when air drag is neglected maximum height reached is

h=\frac{v_0^2}{2g}

h=\frac{50^2}{2\times 9.8}

h=127.55\ m

3 0
3 years ago
find the x-component of this vector 18.4,0.250. Remember, angles are measured from the +x axis. Find the x-component and y-compo
Ksivusya [100]

Answer:

x = 0.237

y = 0.0789

Explanation:

Vector with direction 18.4° and magnitude 0.250 has x and y components of:

x = 0.250 cos 18.4°

x = 0.237

y = 0.250 sin 18.4°

y = 0.0789

7 0
3 years ago
Read 2 more answers
0.22 L of pancake syrup has a mass of 33 g.
katrin2010 [14]

Answer:

a. 150 g/L

b. 75 g

c. 120 mL

Explanation:

a. 33g/0.22L=150 g/L

b. 33g/0.22L=150 g/L

150 g/L*0.5L=75g

c. 0.22L/33g=0.006667L/g

0.006667L/g*18g=0.12L

0.12L*1000=120mL

6 0
2 years ago
A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobber
Tasya [4]

Answer:

Explanation:

Calculate the volume of the lead

V=\frac{m}{d}\\\\=\frac{10g}{11.3g'cm^3}

Now calculate the bouyant force acting on the lead

F_L = Vpg

F_L=(\frac{10g}{11.3g/cm^3} )(1g/cm^3)(9.8m/s^2)\\\\=8.673\times 10^{-3}N

This force will act in upward direction

Gravitational force on the lead due to its mass  will act in downward direction

Hence the difference of this two force

T=mg-F_L\\\\=(10\times10^{-3}kg(9.8m/s^2)-8.673\times 10^{-3}\\\\=8.933\times10^{-3}N

If V is the volume submerged in the water then bouyant force on the bobber is

F_B=V'pg

Equate bouyant force with the tension and gravitational force

F_B=T_mg\\\\V'pg=\frac{(8.933\times10^{-2}N)+mg}{pg} \\\\V'=\frac{(8.933\times10^{-2}N)+mg}{pg}

Now Total volume of bobble is

\frac{V'}{V^B} =\frac{\frac{(8.933\times10^{-2})+Mg}{pg} }{\frac{4}{3} \pi R^3 }\times100\\\\=\frac{\frac{(8.933\times10^{-2})+(3)(9.8)}{(1000)(9.8)} }{\frac{4}{3} \pi (4.0\times10^{-2})^3 }\times100\\\\

=\large\boxed{4.52 \%}

7 0
3 years ago
Other questions:
  • Describe the motion of a skydiver from the time he jumps to the time he lands safely on the ground
    9·1 answer
  • Which best describes the definition for the atomic mass of an element
    9·2 answers
  • Please Help!!!
    11·2 answers
  • Tiles are 6 mm long how many can you fit into a space 54 cm long
    6·1 answer
  • When time is measured in​ days, the decay constant for a particular radioactive isotope is 0.16. Determine the time required for
    5·2 answers
  • Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 25 cm apart. The sound
    9·2 answers
  • A student charges a balloon and then brings it near a metal sphere hanging from the
    10·2 answers
  • Is it possible to stop time
    5·1 answer
  • A. A cord passing over an easily turned pulley (one that is both massless and frictionless) has 7kg mass hanging from one end an
    12·1 answer
  • What is the equilibrium constant for the following reaction at 25 °c?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!