Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

Answer:
Any Lens
Explanation:
I Hope it's right if not so Sorry :)
Answer:
<h3>30m</h3>
Explanation:
Velocity is the change of rate of displacement with respect to time.
velocity = displacement/time
Given
initial velocity = 15 m/s.
time taken =2 secs
Required
Displacement of the object
From the formula;
Displacement = Velocity * time
Displacement = 15 * 2
Displacement = 30m
<em>Hence the displacement of the object is 30m</em>
They relate because the further up you go, the colder it gets, and the air pressure decreases the further up you go. The altitude temperature and the air pressure both decrease, and that is their relationship. Altitude temperature decreases, the higher you go, and air pressure also decreases, the higher up you go. Therefore, the lower down you go, the higher the air pressure, and the higher the altitude temperature.
Hope this helps and have a nice day:)