Answer:
In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers avoid going down blind alleys and learn how to modify conjectures to produce provable theorems.
Step-by-step explanation:
Answer: The total number of logs in the pile is 6.
Step-by-step explanation: Given that a stack of logs has 32 logs on the bottom layer. Each subsequent layer has 6 fewer logs than the previous layer and the top layer has two logs.
We are to find the total number of logs in the pile.
Let n represents the total number of logs in the pile.
Since each subsequent layer has 6 fewer logs then the previous layer, so the number of logs in each layer will become an ARITHMETIC sequence with
first term, a = 32 and common difference, d = -6.
We know that
the n-th term of an arithmetic sequence with first term a and common difference d is

Since there are n logs in the pile, so we get

Thus, the total number of logs in the pile is 6.
Deductive. Since you're making the assumption from something that is mainly true
The answer would be C because perpendicular slopes are negative to opposite or (reciprocals) of one another.