Answer:
26.8g
Explanation:
The formula of the compound given is:
Cu₂CrO₄
Given:
Number of moles = 0.11
To find the mass, we use the expression below:
Mass = number of moles x molar mass
Molar mass of Cu₂CrO₄ = 2(63.6) + 52 + 4(16) = 243.2g/mol
Now insert the parameters and solve;
Mass = 0.11 x 243.2 = 26.8g
Nature is full of wonders and one of the most impressive of them are symbiotic relationships (mutually beneficial relationships). Despite the competition in the kingdom of life, here 2 actors help each other to gain more than they could individually. Let's look at the answers. The sea anemone can't possibly fertilize the clownfish's eggs, only another clownfish can do that. The 4th choice might be correct but it does not help the clownfish; The 5th choice is also correct but it is not related to the offspring of the clownfish. For the 3rd choice, we have that the anemone sometimes provides leftovers for the fish, but the fish' eggs cannot use this source of nutrients. However, we know that the 1st assertion holds; the poisonous tentacles of the sea anemone protect the eggs from potential predators.
Answer:
1 = Q = 7315 j
2 =Q = -21937.5 j
Explanation:
Given data:
Mass of water = 50 g
Initial temperature = 20°C
Final temperature = 55°C
Energy required to change the temperature = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 j/g.°C.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 55°C - 20°C
ΔT = 35°C
Q = 50 g× 4.18 j/g.°C×35°C
Q = 7315 j
Q 2:
Given data:
Mass of metal = 100 g
Initial temperature = 1000°C
Final temperature = 25°C
Energy released = ?
Specific heat capacity = 0.225 j/g.°C
Solution:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 25°C - 1000°C
ΔT = -975°C
Now we will put the values in formula.
Q = 100 g × 0.225 j/g.°C × -975°C
Q = -21937.5 j
Negative sign show that energy is released.
Answer:
Ammonia > Urea > Ammonium nitrate > Ammonium sulphate
Explanation:
Percentage by mass of nitrogen in NH3:
Molar mass of NH3= 17 g/mol
Hence % by mass = 14/17 × 100 = 82.35%
% by mass of NH4NO3
Molar mass of NH4NO3 = 80.043 g/mol
Hence; 28/80.043 × 100 = 34.98%
% by mass of (NH4)2SO4;
Molar mass of (NH4)2SO4= 132.14 g/mol
Hence; 28/132.14 × 100 = 21.19%
% by mass of CH4N2O
Molar mass of urea = 60.0553 g/mol
Hence 28/60.0553 × 100 = 46.62%