Answer:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.00064M)
Explanation:
Hello there!
In this case, according to the given chemical reaction at equilibrium, we can set up the equilibrium expression as follows:
![K=\frac{[CO][Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BCO%5D%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Which can be written in terms of x, according to the ICE table:

Thus, we solve for x to obtain that it has a value of 0.01436 M and therefore, the concentrations at equilibrium turn out to be:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.015M-0.01436M=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.015M-0.01436M%3D0.00064M)
Regards!
Answer:
C
Explanation:
Their are pressure sensers in the water that will detect high pressure and set of scales that are currently detecting semic waves and trigger sierns.
Answer:
900 K
Explanation:
Recall the ideal gas law:

Because only pressure and temperature is changing, we can rearrange the equation as follows:

The right-hand side stays constant. Therefore:

The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for <em>T</em>₂:

Hence, the temperature must be reach 900 K.
Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles =
= 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺
Necesito los puntos es urgente