Answer:
Empirical and molecular formulas are the same, C₅H₁₀O₂.
Explanation:
Hello!
In this case, when determining the empirical and molecular formulas of organic compounds via combustion analysis, we first need to compute the moles of carbon and hydrogen via the yielded mass of carbon dioxide and water:

Next, we need to compute the mass of oxygen by subtracting the mass of carbon and hydrogen to the mass of the sample of the compound:

And consequently the moles:

Now, we need to divide the moles of each atom by the fewest moles, it in this case, those of oxygen to obtain the subscripts in the empirical formula:

Thus, the empirical formula, taken the nearest whole number is:

Now, if we divide the molar mass of the molecular formula (102.1 g/mol) by that of the empirical formula (102.1 g/mol) we infer they are both the same.
Best regards!
Answer:
16.8%
Explanation:
31% NaOH molar mass 40 gm
69% H2O molar mass 18 gm
1000 gm would be
310 gm NaOH or 310/40 = 7.75 moles
690 gm of H2O or 690/18 = 38.333 moles
7.75 / (7.75 + 38.333) = .168 mole fraction
Answer:
1.71 kJ/mol
Explanation:
The expression for the calculation of the enthalpy change of a process is shown below as:-
Where,
is the enthalpy change
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of CaO = 1.045 g
Specific heat = 4.18 J/g°C
So,
Also, 1 J = 0.001 kJ
So,

Also, Molar mass of CaO = 56.0774 g/mol

Thus, Enthalpy change in kJ/mol is:-

Cellular respiration can be thought of as the opposite of photosynthesis. In cellular respiration oxygen is turned into carbon dioxide while in photosynthesis carbon dioxide is tuned to oxygen.
I hope this helps. let me know in the comments if anything is unclear.
Answer:
The structures in the cell work together to perform its life functions
Explanation: