Answer:
184.62 ml
Explanation:
Let
and
be the initial and
and
be the final pressure, volume, and temperature of the gas respectively.
Given that the pressure remains constant, so
...(i)
= 200 ml
K
K
From the ideal gas equation, pv=mRT
Where p is the pressure, v is the volume, T is the temperature in Kelvin, m is the mass of air in kg, R is the specific gas constant.
For the initial condition,

For the final condition,

Equating equation (i), and (ii)

[from equation (i)]

Putting all the given values, we have

Hence, the volume of the gas at 3 degrees Celsius is 184.62 ml.
Answer:The correct answer is option 4.
Explanation:
Arrhenius acids are those compounds which gives
ions when dissolved in their aqueous solution.

Arrhenius bases are those compounds which gives
ions when dissolved in their aqueous solution.

are Arrhenius acids because they form
ions in their respective aqueous solution.


Hence, the correct answer is option 4.
Sucrose and other simple sugars may dissolve in water because they are polar molecules with an unequal charge distribution. Water is also quite polar, capable of forming weak, temporary connections with other polar compounds.
Salt dissolves into ions, with Na being positively charged and CL being negatively charged. Because water is highly polar (parts of the molecule are negatively charged while others are positively charged), the sodium ions are surrounded by water molecules, with the negatively charged component of the water molecules surrounding the NA ion. The Cl ion experiences the inverse effect.
<h3>
How does salt dissolve in water compared to sugar?</h3>
A solution's solute and solvent are two different types of substances that can dissolve one another. Different solvents have different levels of solubility for different solutes. For instance, sugar is far more soluble in water than salt. Even sugar, though, has a limit on how much may dissolve.
learn more about solubility refer:
brainly.com/question/23946616
#SPJ4
Answer:
%N = 25.94%
%O = 74.06%
Explanation:
Step 1: Calculate the mass of nitrogen in 1 mole of N₂O₅
We will multiply the molar mass of N by the number of N atoms in the formula of N₂O₅.
m(N): 2 × 14.01 g = 28.02 g
Step 2: Calculate the mass of oxygen in 1 mole of N₂O₅
We will multiply the molar mass of O by the number of O atoms in the formula of N₂O₅.
m(O): 5 × 16.00 g = 80.00 g
Step 3: Calculate the mass of 1 mole of N₂O₅
We will sum the masses of N and O.
m(N₂O₅) = m(N) + m(O) = 28.02 g + 80.00 g = 108.02 g
Step 4: Calculate the percent composition of N₂O₅
We will use the following expression.
%Element = m(Element)/m(Compound) × 100%
%N = m(N)/m(N₂O₅) × 100% = 28.02 g/108.02 g × 100% = 25.94%
%O = m(O)/m(N₂O₅) × 100% = 80.00 g/108.02 g × 100% = 74.06%