Answer:
A pure substance is made up of only one ingredient or combination. A mixture is made up of two or maybe more separate components that are not chemically linked.
Explanation:
In order to get the sum of 2.7 and 2.47, we will add both numbers. So, 2.7 plus 2.47 would be 5.17. And the correct number of significant digits in this number is still the same, 5.17, so we have three significant numbers. Why? There are three rules in identifying the significant figures: 1. Non zeros are always significant (which this applies in our sum above). 2. Any zeros in between significant numbers are always significant. 3. <span> The final zero or zeros in the decimal portion only are significant.</span>
M = 4.79 kg = 4790 g
d = 7.86 g/cm3
density = mass/volume
v = m/d
v = 4790/7.86
v = 609.4 cm3
1 cm3 = 10^-2 dL
v = 609.4 x 0.01 = 6.09 dL
<h3>
Answer:</h3>
28.52 seconds
<h3>
Explanation:</h3>
Initial number of atoms of Nitrogen 12,000 atoms
Half-life = 7.13
Number of atoms after decay = 750 atoms
We are required to determine the time taken for the decay.
Note that half life is the time taken for a radioactive isotope to decay to a half of its original amount.
Using the formula;
Remaining amount = Initial amount × (1/2)^n , where n is the number of half lives
In our case;
750 atoms = 12,000 atoms × (1/2)^n
0.0625 = 0.5^n
n = log 0.0625 ÷ log 0.5
n = 4
But, 1 half life =7.13 seconds
Therefore;
Time taken = 7.13 seconds × 4
= 28.52 seconds
Therefore, the time taken for 12,000 atoms of nitrogen to decay to 750 atoms is 28.52 seconds
Answer: half life
Explanation: Radioactive decay follows first order kinetics and the time required for the decay of a radioactive material is calculated as follows:

t= time required
k= disintegration constant
x= amount of substance left after time t
a= initial amount of substance
when one half of the sample is decayed, one half of the sample remains and t can be represented as 
at
, 

