Answer:
121.63 g/mol
Explanation:
Sr(OH) 2 = Strontium Hydroxide
Answer: Ionic bonds result from transfer of electrons, whereas covalent bonds are formed by sharing. ... Ionic bonds are electrostatic in nature, resulting from that attraction of positive and negative ions that result from the electron transfer process; charge separation between covalently bonded atoms is less extreme.
Explanation:
Answer:
One distinguishing feature between physical and chemical changes is that a physical change can be reverse or turn back to its original form, but chemical change cannot be return to its form because the material change.
Explanation:
The type of metamorphic rock which will granite is Gneiss.
Explanation:
<h3>Hope it helps...</h3>
Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation: