Imaginary numbers are not rational which may lead you to believe that they must be irrational. Though logical, you would still be incorrect because “irrational” also applies only to real numbers.
Step-by-step explanation:
1. Using the exponent rule (a^b)·(a^c) = a^(b+c) ...

Simplify. Write in Scientific Notation
2. You know that 256 = 2.56·100 = 2.56·10². After that, we use the same rule for exponents as above.

3. The distributive property is useful for this.
(3x – 1)(5x + 4) = (3x)(5x + 4) – 1(5x + 4)
... = 15x² +12x – 5x –4
... = 15x² +7x -4
4. Look for factors of 8·(-3) = -24 that add to give 2, the x-coefficient.
-24 = -1×24 = -2×12 = -3×8 = -4×6
The last pair of factors adds to give 2. Now we can write
... (8x -4)(8x +6)/8 . . . . . where each of the instances of 8 is an instance of the coefficient of x² in the original expression. Factoring 4 from the first factor and 2 from the second factor gives
... (2x -1)(4x +3) . . . . . the factorization you require
When it comes to graphing, Desmos is a lifesaver!
I believe its B
Exact form: -55/18
Decimal form: -3.05 repeating
Mixed form: -3 1/18