Answer: two units to the left, four units down and reflected across the y axis
Answer:
Step-by-step explanation:
a.
first number is 1000-1+9=1008
9)1000(1
9
-------
10
9
-----
10
9
----
1
----
last number is 9999
9| 9999
---------
1111 |0
--------
9999=1008+(n-1)9
9999-1008=(n-1)9
n-1=8991/9=999
n=999+1=1000
b.
first digit=1000
last digit=9999-1=9998
2 |9999
---------
|4999|1
9998=1000+(n-1)2
(n-1)2=9998-1000=8998
n-1=4499
n=4499=1=5000
c.not sure
d.
total numbers=9000
9999=1000+(n-1)1
9999-1000=n-1
n=8999+1=9000
numbers divisible by 3=3000
first number=1002
last number=9999
9999=1002+(n-1)3
(n-1)3=9999-1002=8997
n-1=2999
n=2999+1=3000
numbers not divisible by 3=9000-3000=6000
e.
numbers divisible by 5=1800
first number=1000
last number=9995
9995=1000+(n-1)5
(n-1)5=9995-1000=8995
n-1=1799
n=1799+1=1800
numbers divisible by 7=1286
7 | 1000
---------
| 142-6
1000-6+7=1001
7 | 9999
|---------
1428-3
9999-3=9996
first digit=1001
last digit=9996
9996=1001+(n-1)7
(n-1)7=9996-1001=8995
n-1=1285
n=1285+1=1286
numbers divisible by 35=257
first digit=1015
35 ) 1000 ( 28
70
----
300
280
------
20
---
1000-20+35=1015
35)9999(285
70
----
299
280
-----
199
175
----
24
----
last digit=9999-24=9975
9975=1015+(n-1)35
(n-1)35=9975-1015=8960
n-1=8960/35=256
n=257
reqd. numbers=1800+1286-257=3019
Answer:
do you still need help
Step-by-step explanation:
Answer:
2x+7
Step-by-step explanation:
To Simplify an Expression , we combine Like-Terms
So for our Question , we have Terms with x and Constant Term
Combine Terms with x : 5x-2x-x=2x
Constant Term : 7
Then 5x-2x+7-x = 2x+7
Considering the least common multiple of the denominators, it is found that the result of the expression is given by:
![\frac{9100}{138320}](https://tex.z-dn.net/?f=%5Cfrac%7B9100%7D%7B138320%7D)
<h3>How do we add fractions?</h3>
We place all the terms of the addition in "equivalent" fractions, with the same denominator, found from the last common multiple of all the denominators.
In this problem, the denominators are as follows: 28, 70, 130, 208, 304. Using a calculator, their lcm is of 138,320.
Considering equivalent fractions(the numerators are the division of the lcm by the previous denominator), the expression is:
![\frac{4940}{138320} + \frac{1976}{138320} + \frac{1064}{138320} + \frac{665}{138320} + \frac{455}{138320} = \frac{4940 + 1976 + 1064 + 665 + 455}{138320} = \frac{9100}{138320}](https://tex.z-dn.net/?f=%5Cfrac%7B4940%7D%7B138320%7D%20%2B%20%5Cfrac%7B1976%7D%7B138320%7D%20%2B%20%5Cfrac%7B1064%7D%7B138320%7D%20%2B%20%5Cfrac%7B665%7D%7B138320%7D%20%2B%20%5Cfrac%7B455%7D%7B138320%7D%20%3D%20%5Cfrac%7B4940%20%2B%201976%20%2B%201064%20%2B%20665%20%2B%20455%7D%7B138320%7D%20%3D%20%5Cfrac%7B9100%7D%7B138320%7D)
More can be learned about the addition of fractions at brainly.com/question/78672
#SPJ1