The advantage is that we do not run out of resources and a disadvantage is that is dangerous when a “human” gets too close and gets sick by the radiation.
A 100 g cart is moving at 0.5 m/s that collides elastically from a stationary 180 g cart. Final velocity is calculated to be 0.25m/s.
Collision in which there is no net loss in kinetic energy in the system as a result of the collision is known as elastic collision . Momentum and kinetic energy both are conserved quantities in elastic collisions.
Collision in which part of the kinetic energy is changed to some other form of energy is inelastic collision.
For an elastic collision, we use the formula,
m₁V₁i+ m₂V₂i = m₁V1f + m₂V₂f
For a perfectly elastic collision, the final velocity of the 100g cart will each be 1/2 the velocity of the initial velocity of the moving cart.
Final velocity = 0.5/2
=0.25 m/s.
To know more about elastic collision, refer
brainly.com/question/7694106
#SPJ4
Answer:
I just need to get points soorry
Explanation:
Answer:
Explanation:
The equation for Power is
P = Work/time to do work and the equation for work is
Work = FΔx
We first need to find the amount of work done, then we can find the power it took to do that work.
W = 2000(9.8)(28) so
W = 550,000 N*m
Now we fill that into the power equation:
gives us
P = 18000 Watts. But we need kW, so we divide by 1000 to get
P = 18 kW of power.