The number of waves that pass a fixed point in a given amount of time is wave frequency. Wave frequency can be measured by counting the number of crests (high points) of waves that pass the fixed point in 1 second or some other time period. The higher the number is, the greater the frequency of the waves. :)
True yes TRUE
Science may also be defined as the study of surroundings
Answer:
33.6371 m
Explanation:
t = Time taken
u = Initial velocity = 20.3 m/s
v = Final velocity
s = Displacement
a = Acceleration = -7 m/s²
Distance traveled in the 0.207 seconds
Distance = Speed × Time
⇒Distance = 20.3×0.207 = 4.2021 m
Equation of motion
![v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{0^2-20.3^2}{2\times -7}\\\Rightarrow s=29.435\ m](https://tex.z-dn.net/?f=v%5E2-u%5E2%3D2as%5C%5C%5CRightarrow%20s%3D%5Cfrac%7Bv%5E2-u%5E2%7D%7B2a%7D%5C%5C%5CRightarrow%20s%3D%5Cfrac%7B0%5E2-20.3%5E2%7D%7B2%5Ctimes%20-7%7D%5C%5C%5CRightarrow%20s%3D29.435%5C%20m)
Distance traveled by the car while braking is 29.435 m
Total distance measured from the point where the driver first notices the red light is 29.435+4.2021 = 33.6371 m
The answer would be a speed
Answer:
1 micron = 1.00E-6 m is one way
1.00^-6 m is another but is not usually considered scientific notation, but
often convenient to use.