Answer:
option C
Explanation:
given,
mass of the three planet is same
radius of the planets are
R₁ > R₂ > R₃
expression of escape velocity

G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
from the above expression we can clearly conclude that the escape velocity is inversely proportional to the radius of the Planet.
radius of planet increases escape velocity decreases.
Hence planet 3 has the smallest radius so the escape velocity of the third planet will be maximum.
The correct answer is option C
Atmosphere - gas
sea and oceans - liquid and solid
land -liquid and solid
living things and plants - liquid
The heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises and the cooler air from the sea moves in to replace the risen air. The correct answer is option A
There will be heat transfer from a region of higher temperature to the region of lower temperature. But in the case of land and sea breeze, the transfer of heat are the result of convectional current in nature. Because the land is a better absorber of heat and also has a lower specific heat capacity compare to sea, during the day, the heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises.
The cooler air from the sea moves in to replace the risen air.
Why do ocean winds or sea breezes blow toward shore during the day ? It is because air over the beach heats up, rises and is replaced by ocean air.
Therefore, option A is correct
Learn more here : brainly.com/question/1114842
Well first graph represents rectangular hyperbola
vu = c^2 ( c is constant)
AS 1/v + 1/u = 1/f
Take1/ f to be constant c
1/v = c - 1/u
it is of the form y = - x + k
Slope = -1 having intercept k as shown in fig 2