<em>it would be b and c</em>
<em></em>
<em></em>
<em>it's the whole ''ecosystem''</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
Answer:
The red blood cell would swell.
Explanation:
Since the red blood cell is placed in a solution that has 10% solute than itself, the red blood cell would swell since the solution is a hypotonic solution.
The underlying molecular processes for 19 important DE miRNAs in the etiology of SCII were confirmed. The DE miRNAs could serve as potential intervention targets for SCII. Additionally, blocking microRNAs-3568 reduced apoptosis and preserved hind limb function after SCII, possibly via modulating GATA6, GATA4, and RBPJ in SCII.
microRNAs:
- Short non-coding RNAs called miRNAs (microRNAs) control post-transcriptional gene expression.
- SCII (spinal cord ischemia-reperfusion damage) is a medical condition that can lead to paralysis and paraplegia, among other serious effects. The development of SCII is influenced by aberrant microRNAs expression. Different microRNAs expression results could be caused by variations in the experimenters, filtering circumstances, control choice, and sequencing platform.
- The purpose of this study is to investigate the important differently expressed microRNAs (DE miRNAs) and the underlying molecular mechanism in SCII by methodically analyzing the available SCII microRNAs expression data. A thorough bioinformatics study of 23 representative rat SCII miRNA datasets from PubMed was carried out. On mi RDB, the target genes of important DE miRNAs were predicted.
- Functional enrichment and transcription factor binding analyses using the DAVID and T Fact S databases. Nine were increased (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and ten were downregulated (this study found 19 important DE miRNAs involved in SCII) (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136).Target genes of the increased DE miRNAs underwent KEGG enrichment analysis, which identified the pathways primarily involved as being the cGMP-PKG and cAMP signaling pathways. According to KEGG enrichment analysis of the downregulated DE miRNAs' target genes, the main signaling pathways involved were the Chemokine and MAPK signaling pathways. The target genes of the increased DE miRNAs were clearly enriched in biological processes such brain development and the positive control of transcription from RNA polymerase II promoter, according to GO enrichment analysis.
- The majority of the target genes of the downregulated DE miRNAs were enriched in biological processes such intracellular signal transmission and the inhibition of cell growth. The transcription factor study revealed that the four transcription factors, SP1, GLI1, GLI2, and FOXO3, had significant regulatory effects on the main DE miRNAs' target genes. MiR-3568 stood out among the elevated DE miRNAs as being particularly intriguing. SCII results in significant neurological deficiencies in the lower extremities, but miR-3568 anti-miRNA oligonucleotides (AMOs) enhance neurological performance. When compared to the sham group, cleaved caspase-3 and Bax were significantly elevated in SCII, however the overexpression was inhibited by miR-3568 AMO. In contrast to cleaved caspase-3, Bcl-2 expression levels exhibited a pattern. Following the attenuation of this increase by SCII and microRNAs-3568 AMO, the expression of GATA6, GATA4, and RBPJ reduced.
Learn more about microRNAs here brainly.com/question/14979443
#SPJ4
Basilar membranes
In an active cochlea, basilar membranes vibrate more strongly than in a dead cochlea. because all of the outer hair cells slant significantly and alter in length in response to sound. In response to basilar membrane changes, outer hair cells swell and contract. The frequency tuning curve is impacted by damage to the outer hair cells.
<h3>What are the function of Basilar membranes?</h3>
The basilar membrane is the inner ear's primary mechanical component. Over its length, it has graded mass and stiffness characteristics, and its vibration patterns separate incoming sound into its component frequencies, which trigger various cochlear areas.
Impact do outer hair cells have on our hearing :
As a nonlinear amplifier that enables the cochlea to detect sounds with great sensitivity and accuracy, outer hair cells (OHCs) play a crucial role in hearing. These distortion products can be monitored as distortion-product otoacoustic emissions as a result of the nonlinear sound processing (DPOAEs)
To learn more about Basilar membranes visit:
brainly.com/question/28074500
#SPJ4
Of the options listed, we can confirm that passive transport is not a cellular activity that is powered by the energy received through cellular respiration.
Cellular respiration is a process that produces much of the energy needed and used by a cell. The production of this energy is in the form of a molecule known as ATP. This ATP molecule is responsible for powering the growth of cells by acting as the substrate for most of the metabolic reactions present, as well as powering cellular division and repair.
The only option listed that is not powered by the use of ATP generated through cellular respiration, <em><u>or any other energy-generating method</u></em>, is passive transport. In order to move substances in and out of a cell, transport methods are used. These methods can be:
- Active transports
- Passive transports
Active and passive transports differ in one specific way. Passive transports do not consume energy, whereas active transports do. Therefore, since passive transports use chemical gradients which are natural processes that<u> do not use </u><u>energy</u><u>,</u> it will have no need for the ATP of the cell, and therefore the <u>correct answer</u> is "<em><u>4. Passive Transport</u></em>"
To learn more visit:
brainly.com/question/1619908?referrer=searchResults