Where is the rest of the question
Answer:
II think the answer might be 12ft by 11ft i'm not sure
Step-by-step explanation:
we have
y > -2
x + y < 4
using a graph tool
see the attached figure
The shaded area is the solution of the system
<u>Part 1) </u>Name an ordered pair that is a solution to this system and explain how you know that this is a solution point
Let
A ( -40,20)
The point A is solution of the system because the point lie on the shaded area
<u>Check</u>
If the point A is solution of the system must satisfy both system inequalities
point A
x=-40
y=20
substitute
y > -2-------> 20 > -2-------> is ok
x + y < 4----> -40+20 < 4-----> -20 < 4-----> is ok
therefore
<u>the answer Part 1) is</u>
The point A is a solution of the system
Part 2) Name an ordered pair that is not a solution to the system and explain how you know that it is not a solution
Let
B(20,20)
The point B is not solution of the system because the point not lie on the shaded area
<u>Check</u>
If the point B is not solution of the system must not satisfy both system inequalities
point B
x=20
y=20
substitute
y > -2 -------> 20 > -2-------> is ok
x + y < 4---->20+20 < 4-----> 40 < 4------> is not ok
therefore
<u>the answer part 2) is</u>
The point B is not a solution to the system
Answer:
Probabilty of not poor= 0.75
Step-by-step explanation:
total of 11332 bonds.
7311 are good risk.
1182 are medium risk.
Poor risk
= total risk-(good risk+ medium risk)
= 11332-(7311+1182)
= 11332-8493
= 2839.
Poor risk = 2839
Probabilty that the ball choosen at random is not poor= 1 - probability that the ball is poor
Probability of poor = 2839/11332
Probabilty of poor= 0.2505
Probabilty that the ball choosen at random is not poor= 1- 0.2505
= 0.7495
To two decimal place= 0.75