<em>here</em><em>,</em>
<em>f</em><em>(</em><em>x</em><em>)</em><em>=</em><em>x</em><em>-</em><em>4</em>
<em>then</em><em>,</em><em> </em><em>f</em><em>(</em><em>-</em><em>3</em><em>.</em><em>2</em><em>)</em><em>=</em><em>(</em><em>-</em><em>3</em><em>.</em><em>2</em><em>)</em><em>-</em><em>4</em>
<em>[</em><em> </em><em>replace</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>e</em><em>quation</em><em> </em><em>by</em><em> </em><em>-</em><em>3</em><em>.</em><em>2</em><em>]</em>
<em>therefore</em><em>,</em><em>f</em><em>(</em><em>-</em><em>3</em><em>.</em><em>2</em><em>)</em><em>=</em><em>-</em><em>7</em><em>.</em><em>2</em><em> </em><em>answer</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em>.</em><em>HAVE</em><em> </em><em>A</em><em> </em><em>NICE</em><em> </em><em>DAY</em><em>/</em><em>NIGHT</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
The correct answer is C. n is greater than or equal to 30
9514 1404 393
Answer:
y = -(x+1)^2 +3
Step-by-step explanation:
Translating f(x) left by 1 unit replaces x with x+1.
Translating f(x) up by 3 units replaces f(x) with f(x)+3.
Reflecting f(x) over the x-axis replaces f(x) with -f(x).
__
When y = x^2 is reflected over the x-axis, it becomes ...
y = -x^2
When y = -x^2 is translated 1 unit left, it becomes ...
y = -(x +1)^2
When y = -(x+1)^2 is translated 3 units up, it becomes ...
y = -(x +1)^2 +3
Answer:
H0: p ≤ 0.50
Ha: p > 0.50
Step-by-step explanation:
The null hypothesis (H0) tries to show that no significant variation exists between variables or that a single variable is no different than its mean. While an alternative Hypothesis (Ha) attempt to prove that a new theory is true rather than the old one. That a variable is significantly different from the mean.
For the case above;
Let p represent the proportion of households in the city that gave a charitable donation in the past year
The null hypothesis is that the proportion of households in the city that gave a charitable donation in the past year is not more that 0.50
H0: p ≤ 0.50
The alternative hypothesis is that the proportion of households in the city that gave a charitable donation in the past year is more that 0.50
Ha: p > 0.50