Answer:
Since the slopes of the two equations are equivalent, the basketballs' paths are parallel.
Step-by-step explanation:
Remember that:
- Two lines are parallel if their slopes are equivalent.
- Two lines are perpendicular if their slopes are negative reciprocals of each other.
- And two lines are neither if neither of the two cases above apply.
So, let's find the slope of each equation.
The first basketball is modeled by:

We can convert this into slope-intercept form. Subtract 3<em>x</em> from both sides:

And divide both sides by four:

So, the slope of the first basketball is -3/4.
The second basketball is modeled by:

Again, let's convert this into slope-intercept form. Add 6<em>x</em> to both sides:

And divide both sides by negative eight:

So, the slope of the second basketball is also -3/4.
Since the slopes of the two equations are equivalent, the basketballs' paths are parallel.
Answer:
0.0351478382 (To be precise)
Step-by-step explanation: Can I get brainliest? Thanks
1. Normal Distribution --> Z ~ (0,1^2)
2. Use normalcdf(lower bound, upper bound, μ, σ) function on a graphing calculator
P(Z≥103.53) = normalcdf(103.53, 1e99 [default], 80, 13)
P(Z≥103.53) ≈ 0.03
3. μ+σ ≈ 13.59% According to Z-distribution chart
80+13=93
So about 93 exceed only the top 16% (estimated answer not exact)
It's a linear function. We need only two points to draw a graph.
We choose any values of x and calculate the value of y.

for x= 0 → y = 3(0) - 1 = 0 - 1 = -1 → (0, -1)
for x = 2 → y = 3(2) - 1 = 6 - 1 = 5 → (2, 5)

for x = 0 → y = 3(0) - 1/3 = 0 - 1/3 = -1/3 → (0, -1/3)
for x = 2 → y = 3(2) - 1/3 = 6 - 1/3 = 5 2/3 → (2, 5 2/3)
Answer:
Our answer is 0.8172
Step-by-step explanation:
P(doubles on a single roll of pair of dice) =(6/36) =1/6
therefore P(in 3 rolls of pair of dice at least one doubles)=1-P(none of roll shows a double)
=1-(1-1/6)3 =91/216
for 12 players this follows binomial distribution with parameter n=12 and p=91/216
probability that at least 4 of the players will get “doubles” at least once =P(X>=4)
=1-(P(X<=3)
=1-((₁₂ C0)×(91/216)⁰(125/216)¹²+(₁₂ C1)×(91/216)¹(125/216)¹¹+(₁₂ C2)×(91/216)²(125/216)¹⁰+(₁₂ C3)×(91/216)³(125/216)⁹)
=1-0.1828
=0.8172
The angle is 90° degrees.