Answer:
Scientists seek to eliminate all forms of bias from their research. However, all scientists also make assumptions of a non-empirical nature about topics such as causality, determinism and reductionism when conducting research. Here, we argue that since these 'philosophical biases' cannot be avoided, they need to be debated critically by scientists and philosophers of science.
Explanation:
Scientists are keen to avoid bias of any kind because they threaten scientific ideals such as objectivity, transparency and rationality. The scientific community has made substantial efforts to detect, explicate and critically examine different types of biases (Sackett, 1979; Ioannidis, 2005; Ioannidis, 2018; Macleod et al., 2015). One example of this is the catalogue of all the biases that affect medical evidence compiled by the Centre for Evidence Based Medicine at Oxford University (catalogueofbias.org). Such awareness is commonly seen as a crucial step towards making science objective, transparent and free from bias.
Well when a particle of air is becomes heated it rises, right? So you could write some like you started off close to the earth (aka the troposphere) until you became heated then you started to rise and as you reached higher elevations you cooled down and you were recycled into cool air and you moved back down and became new fresh cool air until the next time you'll become heated and rise again to be recycled into fresh cool new air.
Answer:
The process of photosynthesis is commonly written as: 6CO2 + 6H2O → C6H12O6 + 6O2.
Explanation:
This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products.