Heyyyyyyyyyyyyyyyyyyyyyyy
Answer:
Bending stress at point 3.96 is \sigma_b = 1.37 psi
Explanation:
Given data:
Bending Moment M is 4.176 ft-lb = 50.12 in- lb
moment of inertia I = 144 inc^4
y = 3.96 in

putting all value to get bending stress

Bending stress at point 3.96 is
= 1.37 psi
Answer:
Normal force = 0.326N
Explanation:
Given that:
mass released from rest at C = 3.7 g = 3.7 × 10⁻³ kg
height of the mass = 1.1 m
radius = 0.2 m
acceleration due to gravity = 9.8 m/s²
We are to determine the normal force pressing on the track at A.
To to that;
Let consider the conservation of energy relation; which says:
mgh = mgr + 1/2 mv²
gh = gr + 1/2 v²
gh - gr = 1/2v²
g(h-r) = 1/2v²
v² = 2g(h-r)
However; the normal force will result to a centripetal force; as such, using the relation
N =mv²/r
replacing the value for v² = 2g(h-r) in the above relation; we have:
Normal force = 2mg(h-r)/r
Normal force = 2 × 3.7 × 10⁻³ × 9.8 ( 1.1 - 0.2 )/ 0.2
Normal force = 0.065268/0.2
Normal force = 0.32634 N
Normal force = 0.326N
The light colored material in areas of the mood is the earliest crust on the moon.
Answer:
Option A, World War II
Explanation:
During the period of industrial revolution around 1915-25, the chemical engineering has taken a new shape. During this period (i.e around the world war I), there was rise in demand for liquid fuels, synthetic fertilizer, and other chemical products. This lead to development of chemistry centre in Germany . There was rise in use of synthetics fibres and polymers. World war II saw the growth of catalytic cracking, fluidized beds, synthetic rubber, pharmaceuticals production, oil & oil products, etc. and because of rising chemical demand, chemical engineering took a new shape during this period
Hence, option A is the right answer