Answer:
The triple point represents the combination of pressure and temperature that facilitates all phases of matter at equilibrium. The critical point terminates the liquid/gas phase line .
Explanation:
Complete Question
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
The elongation is 
Explanation:
In order to gain a good understanding of this solution let define some terms
True Stress
A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as
.
True Strain
A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as
.
The mathematical relation between stress to strain on the plastic region of deformation is

Where K is a constant
n is known as the strain hardening exponent
This constant K can be obtained as follows

No substituting
from the question we have


Making
the subject from the equation above




From the definition we mentioned instantaneous length and this can be obtained mathematically as follows

Where
is the instantaneous length
is the original length



We can also obtain the elongated length mathematically as follows



Answer:
A.) Find the answer in the explanation
B.) Ua = 7.33 m/s , Vb = 7.73 m/s
C.) Impulse = 17.6 Ns
D.) 49%
Explanation:
Let Ua = initial velocity of the rod A
Ub = initial velocity of the rod B
Va = final velocity of the rod A
Vb = final velocity of the rod B
Ma = mass of rod A
Mb = mass of rod B
Given that
Ma = 2kg
Mb = 1kg
Ub = 3 m/s
Va = 0
e = restitution coefficient = 0.65
The general expression for the velocities of the two rods after impact will be achieved by considering the conservation of linear momentum.
Please find the attached files for the solution
Answer:
The answer is "828.75"
Explanation:
Please find the correct question:
For W21x93 BEAM,

For A992 STREL,

Check for complete section:

Design the strength of beam =
