1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BARSIC [14]
3 years ago
6

Using the characteristics equation, determine the dynamic behavior of a PI controller with τI = 4 applied to a second order proc

ess (Kp = 2, τn = 5 and ζ = 1.5). Assume that Gc(s) and Ga(s) are equal to unity. Find the values of Kc that render this closed-loop process unstable.
Characteristic Equaton : Gp*Ga*Gc*Gs + 1 = 0
Engineering
1 answer:
Sladkaya [172]3 years ago
8 0

Answer:

The values of Kc that render this closed-loop process unstable are in the interval

(Kc < 0)

Explanation:

The transfer function of a PI controller is given as

Gc = Kc {1 + (1/sτI)}

τI = 4

Gc = Kc {1 + (1/4s)}

Gc = Kc {(4s+1)/(4s)}

Divide numerator and denominator by 4

Gc = Kc {(s+0.25)/(s)}

For a second order process, the general transfer function is given by

Gp = Kp {1/(τn²s² + 2ζτns + 1)}

Kp = 2, τn = 5 and ζ = 1.5

Gp = 2/(25s² + 15s + 1)

Divide numerator and denominator by 25

Gp = 0.08/(s² + 0.6s + 0.04)

Ga = 1

Gs = 1

We need to find the value(s) of Kc that makes the closed loop transfer function unstable. Gp*Ga*Gc*Gs + 1 = 0

The closed loop transfer function is unstable when the solution(s) of the characteristic equation obtained is positive.

Gp*Ga*Gc*Gs + 1 = 0

Becomes

[0.08/(s² + 0.6s + 0.04)] × [Kc (s+0.25)/(s)] + 1 = 0

[0.08Kc (s + 0.25)/(s³ + 0.6s² + 0.04s)] = - 1

0.08Kc (s + 0.25) = -s³ - 0.6s² - 0.04s

0.08Kc s + 0.02Kc = -s³ - 0.6s² - 0.04s

s³ + 0.6s² + 0.04s + 0.08Kc s + 0.02Kc = 0

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

We will use the direct substitution method to evaluate the values of Kc that matter. The values of Kc at the turning points of the closed loop transfer function.

For the substitution,

We put s = jw into the equation. (frequency analysis)

Note that j = √(-1)

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

(jw)³ + 0.6(jw)² + (0.08Kc + 0.04)(jw) + 0.02Kc = 0

-jw³ - 0.6w² + (0.08Kc + 0.04)(jw) + 0.02Kc = 0

we then collect terms with j and terms without.

(0.08Kcw + 0.04w - w³)j + (0.02Kc - 0.6w²) = 0

Meaning,

0.08Kcw + 0.04w - w³ = 0 (eqn 1)

0.02Kc - 0.6w² = 0 (eqn 2)

0.02 Kc = 0.6 w²

Kc = 15w²

Substituting this into eqn 1

0.08Kcw + 0.04w - w³ = 0

Kc = 15w²

0.08(15w²)w + 0.04w - w³ = 0

1.2w³ + 0.04w - w³ = 0

0.2w³ + 0.04w = 0

w = 0 or 0.2w² + 0.04 = 0

0.2w² = -0.04

w² = -0.2

w = ± √(-0.2)

w = ± 0.4472j or w = 0

Recall, Kc = 15w² = 15(-0.2) = -3 or Kc = 0

The turning points for the curve of the closed loop transfer function occur when

Kc = 0 or Kc = -3

To investigate, we pick values around these turning points to investigate the behaviour of the closed loop transfer function at those points.

Kc < -3, Kc = -3, (-3 < Kc < 0), Kc = 0 and Kc > 0

Note that, one positive characteristic root or pole is enough to make the system unstable.

We pick a value for Kc in that interval and evaluate the closed loop transfer function.

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

- First of, let Kc = - 4 (Kc < -3)

s³ + 0.6s² - 0.28s - 0.08 = 0

Solving the polynomial

s = (-0.22002), 0.44223, (-0.82221)

One positive pole means the closed loop transfer function is unstable in this region

Let Kc = -3

s³ + 0.6s² - 0.20s - 0.06 = 0

s = 0.37183, (-0.21251) or (-0.75933)

One positive pole still means that the closed loop transfer function is still unstable.

Then the next interval

Let Kc = -1

s³ + 0.6s² - 0.04s - 0.02 = 0

Solving this polynomial,

s = 0.18686, (-0.1749) or (-0.61196)

The function is unstable in the region being investigated.

Let Kc = 0

s³ + 0.6s² + 0.04s = 0

s = 0, -0.0769, -0.5236

One zero, all negative roots, indicate that the closed loop transfer function is marginally stable at this point.

Let Kc = 1, Kc > 0

s³ + 0.6s² + 0.12s + 0.02 = 0

s = (-0.42894), (-0.08553 + 0.1983j) or (-0.08553 - 0.1983j)

All the real negative parts of the poles are all negative, this indicates stability.

Hence, after examining the turning points of the closed loop transfer function, it is evident that, the region's of Kc where the closed loop transfer function is unstable is (Kc < 0)

Hope this Helps!!!

You might be interested in
Which of the following is important in career planing
svet-max [94.6K]

Answer:

what are the options?

Explanation:

you don't have anything

5 0
3 years ago
Which one of the following does NOT measure the spread of a set of data?
yan [13]

Answer:

B: Median

Explanation:

Measure of spread is used to find how close each observed value is to the mean value.

4 0
2 years ago
A 50 mm 45 mm 20 mm cell phone charger has a surface temperature of Ts 33 C when plugged into an electrical wall outlet but not
romanna [79]

Answer:

C = $0.0032 per day

Explanation:

We are given;

Dimension of cell phone; 50 mm × 45 mm × 20 mm

Temperature of charger; T1 = 33°C = 306K

Emissivity; ε = 0.92

convection heat transfer coefficient; h = 4.5 W/m².K

Room air temperature; T∞ = 22°C = 295K

Wall temperature; T2 = 20°C = 293 K

Cost of electricity; C = $0.18/kW.h

Chargers are usually in the form of a cuboid, and thus, surface Area is;

A = (50 × 45) + 2(50 × 20) + 2(45 × 20)

A = 6050 mm²

A = 6.05 × 10^(-3) m²

Formula for total heat transfer rate is;

E_t = hA(T1 - T∞) + εσA((T1)⁴ - (T2)⁴)

Where σ is Stefan Boltzmann constant with a value of; σ = 5.67 × 10^(-8) W/m².K⁴

Thus;

E_t = 4.5 × 6.05 × 10^(-3) (306 - 295) + (0.92 × 6.05 × 10^(-3) × 5.67 × 10^(-8)(306^(4) - 293^(4)))

E_t = 0.7406 W = 0.7406 × 10^(-3) KW

Now, we know C = $0.18/kW.h

Thus daily cost which has 24 hours gives;

C = 0.18 × 0.7406 × 10^(-3) × 24

C = $0.0032 per day

6 0
3 years ago
A kitchen contains one section of counter that's 20 inches
Ne4ueva [31]

The number of receptacles that are needed for all of these kitchen areas are: C. Four.

<h3>What are receptacles?</h3>

Receptacles can be defined as types of sockets or series of outlets (openings) that provides a path where current can be taken in a wiring system, so as to run electrical appliances in buildings.

Based on the information provided, the number of receptacles that are needed for all of these kitchen areas are four because one would be used in each area.

Read more on receptacles here: brainly.com/question/23839796

#SPJ1

4 0
2 years ago
Liệt kê 10 quá trình sản xuất trong công nghiệp có sử dụng chất xúc tác
Ugo [173]

Answer: English please!

Explanation:

3 0
3 years ago
Other questions:
  • The motor draws in the cord at B with an acceleration of aB = 2 m/s2 . When sA = 1.5 m , vB = 6.2 m/s .
    9·1 answer
  • A circular specimen of MgO is loaded in three-point bending. Calculate the minimum possible radius of the specimen without fract
    7·1 answer
  • Reserve Problem 4.006 Tutorial SI
    14·1 answer
  • A 20 mm diameter cylindrical rod fabricated from a 2014-T6 alloy is subjected to repeated tension-compression load cycling along
    12·1 answer
  • A water contains 50.40 mg/L as CaCO3 of carbon dioxide, 190.00 mg/L as CaCO3 of Ca2 and 55.00 mg/L as CaCO3 of Mg2 . All of the
    5·2 answers
  • Pls i need help with this
    6·1 answer
  • A bridge foundation has a nominal load capacity of 1700kN. If the resistance factor for this foundation is 0.65, what is the ult
    8·1 answer
  • . H<br> Kijwhayhwbbwyhwbwbwgwwgbwbwhwh
    6·2 answers
  • Can push or pull an object.<br> O Tension<br> O Compression<br> O Force<br> O Axial
    8·2 answers
  • A transformer has a 120/208-volt wye secondary. If the current in each of the secondary coils (or windings) is 75 amps, what is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!