1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BARSIC [14]
3 years ago
6

Using the characteristics equation, determine the dynamic behavior of a PI controller with τI = 4 applied to a second order proc

ess (Kp = 2, τn = 5 and ζ = 1.5). Assume that Gc(s) and Ga(s) are equal to unity. Find the values of Kc that render this closed-loop process unstable.
Characteristic Equaton : Gp*Ga*Gc*Gs + 1 = 0
Engineering
1 answer:
Sladkaya [172]3 years ago
8 0

Answer:

The values of Kc that render this closed-loop process unstable are in the interval

(Kc < 0)

Explanation:

The transfer function of a PI controller is given as

Gc = Kc {1 + (1/sτI)}

τI = 4

Gc = Kc {1 + (1/4s)}

Gc = Kc {(4s+1)/(4s)}

Divide numerator and denominator by 4

Gc = Kc {(s+0.25)/(s)}

For a second order process, the general transfer function is given by

Gp = Kp {1/(τn²s² + 2ζτns + 1)}

Kp = 2, τn = 5 and ζ = 1.5

Gp = 2/(25s² + 15s + 1)

Divide numerator and denominator by 25

Gp = 0.08/(s² + 0.6s + 0.04)

Ga = 1

Gs = 1

We need to find the value(s) of Kc that makes the closed loop transfer function unstable. Gp*Ga*Gc*Gs + 1 = 0

The closed loop transfer function is unstable when the solution(s) of the characteristic equation obtained is positive.

Gp*Ga*Gc*Gs + 1 = 0

Becomes

[0.08/(s² + 0.6s + 0.04)] × [Kc (s+0.25)/(s)] + 1 = 0

[0.08Kc (s + 0.25)/(s³ + 0.6s² + 0.04s)] = - 1

0.08Kc (s + 0.25) = -s³ - 0.6s² - 0.04s

0.08Kc s + 0.02Kc = -s³ - 0.6s² - 0.04s

s³ + 0.6s² + 0.04s + 0.08Kc s + 0.02Kc = 0

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

We will use the direct substitution method to evaluate the values of Kc that matter. The values of Kc at the turning points of the closed loop transfer function.

For the substitution,

We put s = jw into the equation. (frequency analysis)

Note that j = √(-1)

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

(jw)³ + 0.6(jw)² + (0.08Kc + 0.04)(jw) + 0.02Kc = 0

-jw³ - 0.6w² + (0.08Kc + 0.04)(jw) + 0.02Kc = 0

we then collect terms with j and terms without.

(0.08Kcw + 0.04w - w³)j + (0.02Kc - 0.6w²) = 0

Meaning,

0.08Kcw + 0.04w - w³ = 0 (eqn 1)

0.02Kc - 0.6w² = 0 (eqn 2)

0.02 Kc = 0.6 w²

Kc = 15w²

Substituting this into eqn 1

0.08Kcw + 0.04w - w³ = 0

Kc = 15w²

0.08(15w²)w + 0.04w - w³ = 0

1.2w³ + 0.04w - w³ = 0

0.2w³ + 0.04w = 0

w = 0 or 0.2w² + 0.04 = 0

0.2w² = -0.04

w² = -0.2

w = ± √(-0.2)

w = ± 0.4472j or w = 0

Recall, Kc = 15w² = 15(-0.2) = -3 or Kc = 0

The turning points for the curve of the closed loop transfer function occur when

Kc = 0 or Kc = -3

To investigate, we pick values around these turning points to investigate the behaviour of the closed loop transfer function at those points.

Kc < -3, Kc = -3, (-3 < Kc < 0), Kc = 0 and Kc > 0

Note that, one positive characteristic root or pole is enough to make the system unstable.

We pick a value for Kc in that interval and evaluate the closed loop transfer function.

s³ + 0.6s² + (0.08Kc + 0.04)s + 0.02Kc = 0

- First of, let Kc = - 4 (Kc < -3)

s³ + 0.6s² - 0.28s - 0.08 = 0

Solving the polynomial

s = (-0.22002), 0.44223, (-0.82221)

One positive pole means the closed loop transfer function is unstable in this region

Let Kc = -3

s³ + 0.6s² - 0.20s - 0.06 = 0

s = 0.37183, (-0.21251) or (-0.75933)

One positive pole still means that the closed loop transfer function is still unstable.

Then the next interval

Let Kc = -1

s³ + 0.6s² - 0.04s - 0.02 = 0

Solving this polynomial,

s = 0.18686, (-0.1749) or (-0.61196)

The function is unstable in the region being investigated.

Let Kc = 0

s³ + 0.6s² + 0.04s = 0

s = 0, -0.0769, -0.5236

One zero, all negative roots, indicate that the closed loop transfer function is marginally stable at this point.

Let Kc = 1, Kc > 0

s³ + 0.6s² + 0.12s + 0.02 = 0

s = (-0.42894), (-0.08553 + 0.1983j) or (-0.08553 - 0.1983j)

All the real negative parts of the poles are all negative, this indicates stability.

Hence, after examining the turning points of the closed loop transfer function, it is evident that, the region's of Kc where the closed loop transfer function is unstable is (Kc < 0)

Hope this Helps!!!

You might be interested in
What does abbreviation vom stand for
MrMuchimi
It’s Volt Ohm Meter!
8 0
3 years ago
Read 2 more answers
The two shafts of a Hooke’s coupling have their axes inclined at 20°.The shaft A revolves at a uniform speed of 1000 rpm. The sh
lapo4ka [179]

Answer:

33.429 N-m

Explanation:

Given :

Inclination angle of two shaft, α = 20°

Speed of shaft A, N_{A} = 1000 rpm

Mass of flywheel, m = 30 kg

Radius of Gyration, k =100 mm

                                   = 0.1 m

Now we know that for maximum velocity,

\frac{N_{B}}{N_{A}} = \frac{cos\alpha }{1 - sin^{2}\alpha }

\frac{N_{B}}{1000} = \frac{cos20}{1 - sin^{2}20 }

N_{B} = 1064.1 rpm

Now we know

Mass of flywheel, m = 30 kg

Radius of Gyration, k =100 mm

                                   = 0.1 m

Therefore moment of inertia of flywheel, I = m.k^{2}

                                                                      =30 X 0.1^{2}

                                                                     = 0.3 kg-m^{2}

Now torque on the output shaft

T₂ = I x ω

    = 0.3 X 1064.2 rpm

    = 0.3\times \frac{2\pi \times 1064.1}{60}

     = 33.429 N-m

Torque on the Shaft B is 33.429 N-m

4 0
3 years ago
__________<br> is an accurate way of drawing that shows an object's<br> true size and shape.
Bingel [31]
ANSWER:

Detail drawing
6 0
3 years ago
A 5­stage single pipeline computer uses the pipeline mentioned in the lecture (not the book). It resolves the direction and targ
brilliants [131]
I have no idea sorry
7 0
3 years ago
A insulated vessel s has two compartments separated by a membreane. On one side is 1kg of steam at 400 degC and 200 bar. The oth
Lilit [14]

Answer:

See explaination

Explanation:

See attachment for the detailed step by step solution of the given problem.

5 0
3 years ago
Other questions:
  • The following laboratory tests are performed on aggregate samples:a. Specific gravity and absorptionb. Soundnessc. Sieve analysi
    13·1 answer
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    15·1 answer
  • A PV battery system has an end-to-end efficiency of 77%. The system is used to run an all-AC load that is run only at night. The
    11·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • g A food department is kept at -12oC by a refrigerator in an environment at 30oC. The total heat gain to the food department is
    7·1 answer
  • A horse on the merry-go-round moves according to the equations r = 8 ft, u = (0.6t) rad, and z = (1.5 sin u) ft, where t is in s
    5·1 answer
  • Two pressure gauges measure a pressure drop of 16.3 psi (lb/in.2) at the entrance and exit of an old buried pipeline. The origin
    13·1 answer
  • 11. Technician A says that gasoline storage containers should be painted red. Technician B says that any metal container may be
    7·1 answer
  • PLEASE HELP!!! ILL GIVE BRANLIEST *EXTRA POINTS* dont skip :((
    11·2 answers
  • Time left 0:35:32 Three steel rod (E = 200 GPa) supports 36 KN Load P. Each of the rods AB and CD has a 200 mm? cross- sectional
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!