1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
2 years ago
14

I need help I gotta find x.

Mathematics
1 answer:
forsale [732]2 years ago
5 0

Answer:

Enjoy:)

Step-by-step explanation:

You might be interested in
Change 5x-3y=3 in slope intercept and graph it
kenny6666 [7]
An equation in the form of slope intercept is written as y=mx+b. That means that we need to get y positive, which we can do by adding 3y to each side, and then subtracting 3 from each side to get y by itself. Doing all of these steps, the equation becomes 3y=5x-3. But, we're not done because we still need to get y equal to one, which we can do by dividing each side of the equation by 3. This makes the equation become y=5/3x-1.

The graph of the equation looks like this:

4 0
2 years ago
Determine which relation is a function.
lys-0071 [83]
You know if something is a function or not because the X will never be used twice in a set. If it is, then it's not a function.
A. Uses -1 twice
B. Uses Nothing twice (good)
C. Uses 0 twice
D. Uses 0 twice
B is your answer


5 0
3 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
What is 3x+X short answer
nikdorinn [45]

4x................... I hope it helps

8 0
3 years ago
Ruben put an empty cup underneath a leaking faucet. After 1 1/2 hours, Ruben had collected 1/4 cup of water. What is the rate, i
worty [1.4K]

Answer:

The rate is \frac{1}{6} cups per hour

Step-by-step explanation:

It took the faucet 1 1/2 hours, i.e 1.5 or 3/2 hours to fill 1/4 cup by leaking

We need to find the rate in terms of cups that can be filled by water in 1 hour.

Using unitary method:

If it takes \frac{3}{2} h for \frac{1}{4} cup;

then it will take 1 h for how many cups?

= \frac{1 \times \frac{1}{4} }{\frac{3}{2} }

= \frac{2}{4 \times 3}

= \frac{2}{12}

= \frac{1}{6} cups

Therefore, the rate is \frac{1}{6} cups per hour

5 0
3 years ago
Other questions:
  • A cubical swimming pool is of side 12m is filled with water up to a depth of 2m. What is the quantity of water in the pool in li
    7·1 answer
  • Solve: 4 − 2(2x − 7) = −6.​
    15·1 answer
  • 30 points for how ever answers this In order to find the amount of paint needed to fill a bucket, which of the following needs t
    10·2 answers
  • 20 POINTS AND I WILL MARK YOU BRAINISET!!!!! PLEASE COMPLETE ASAP!!
    12·2 answers
  • Which function is a quadratic function
    9·1 answer
  • John has a spinner with eight equal sectors with labels from 1 to 8. he spins the spinner once. what is the probability that he
    14·2 answers
  • What is the equation of the directrix of the parabola given by the equation y2 = -24x?
    14·1 answer
  • Find the volume of the Canada post mailbox shown below.
    6·1 answer
  • I NEED HELP ASAP, QUESTIONS IN ON THE IMAGE
    15·1 answer
  • At Pizza Company, Lee made 50 pizzas one day. There were 110 pizzas sold that day. What fraction of the pizzas did Lee make? Sim
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!