let L = length and let W = width.
Use the equations 2L + 2W = 2750
and L = 5W + 15
Then do the steps as follows -
1. Plug the equation for what L equals into the first equation
2(5W+15) + 2W = 2750
2. Then distribute the 2
10W + 30 + 2W = 2750
3. Then add like terms
12W + 30 = 2750
4. Then subtract 30 from both sides
12W = 2720
5. Divide by 12 on both sides
W = 226.67
6. Then plug that into the second equation
L = 5(226.67) + 15
L = 1148.35 should be the answer
Answer:
21
Step-by-step explanation:
![\left[\begin{array}{cc}5&9\\-6&9\end{array}\right] +6\left[\begin{array}{cc}-5&2\\7&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%269%5C%5C-6%269%5Cend%7Barray%7D%5Cright%5D%20%2B6%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-5%262%5C%5C7%268%5Cend%7Barray%7D%5Cright%5D)
Multiply the second matrix by 6.
![\left[\begin{array}{cc}5&9\\-6&9\end{array}\right] +\left[\begin{array}{cc}-30&12\\42&48\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%269%5C%5C-6%269%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-30%2612%5C%5C42%2648%5Cend%7Barray%7D%5Cright%5D)
Add the corresponding cells in each matrix.
![\left[\begin{array}{cc}5-30&9+12\\-6+42&9+48\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5-30%269%2B12%5C%5C-6%2B42%269%2B48%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cc}-25&21\\36&57\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-25%2621%5C%5C36%2657%5Cend%7Barray%7D%5Cright%5D)