Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
The acceleration which is gained by an object because of the gravitational force is called its acceleration due to gravity. Its SI unit is m/s2. Acceleration due to gravity is a vector, which means it has both a magnitude and a direction. The formula is ‘the change in velocity= gravity x time’ The acceleration due to gravity at the surface of Earth is represented as g. It has a standard value defined as 9.80665 m/s2.[1]
The mass would be the same
47kg on the moon as well
Answer:
P = 5sin(880πt)
Explanation:
We write the pressure in the form P = Asin2πft where A = amplitude of pressure, f = frequency of vibration and t = time.
Now, striking the middle-A tuning fork with a force that produces a maximum pressure of 5 pascals implies A = 5 Pa.
Also, the frequency of vibration is 440 hertz. So, f = 440Hz
Thus, P = Asin2πft
P = 5sin2π(440)t
P = 5sin(880πt)