22. a - (vf^2 - vi^2)/(2d) 
a = (0 - 23^2)/(170) 
a = -3.1 m/s^2
23. Find the time (t) to reach 33 m/s at 3 m/s^2
33-0/t = 3 
33 = 3t 
t = 11 sec to reach 33 m/s^2
Find the av velocuty: 33+0/2 = 16.5 m/s
Dist = 16.5 * 11 = 181.5 meters to each 33m/s speed. Runway has to be at least this long. 
24. The sprinter starts from rest. The average acceleration is found from: 
(Vf)^2 = (Vi)^2 = 2as ---> a = (Vf)^2 - (Vi)^2/2s = (11.5m/s)^2-0/2(15.0m) = 4.408m/s^2 estimated: 4.41m/s^2
The elapsed time is found by solving
Vf = Vi + at ----> t = vf-vi/a = 11.5m/s-0/4.408m/s^2 = 2.61s
25. Acceleration of car = v-u/t = 0ms^-1-21.0ms^-1/6.00s = -3.50ms^-2
S = v^2 - u^2/2a = (0ms^-1)^2-(21.0ms^-1)^2/2*-3.50ms^-2 = 63.0m 
26. Assuming a constant deceleration of 7.00 m/s^2
final velocity, v = 0m/s 
acceleration, a = -7.00m/s^2
displacement, s - 92m 
Using v^2 = u^2 - 2as 
0^2 - u^2 + 2 (-7.00) (92) 
initial velocity, u = sqrt (1288) = 35.9 m/s 
This is the speed pf the car just bore braking. 
I hope this helps!! 
        
             
        
        
        
I would say b as well. I’m sorry if it’s wrong
        
             
        
        
        
Whatever the statement is, I know one thing for sure:  It's NOT included on the list of choices that you've provided.
 
        
             
        
        
        
Answer:
The surface tension is 0.0318 N/m and is sufficiently less than the surface tension of the water.
Solution:
As per the question:
Radius of an alveolus, R = 
Gauge Pressure inside, 
Blood Pressure outside, 
Now,
Change in pressure, 
Since the alveolus is considered to be a spherical shell
The surface tension can be calculated as:


And we know that the surface tension of water is 72.8 mN/m
Thus the surface tension of the alveolus is much lesser as compared to the surface tension of water.