Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m
25x15 is 375 cndnmekcivjfndn(sorry it said I needed 20 characters to comment)
Frozen water has move volume than water in liquid form
The answer is 12,390 ft.
At first, a climber is at 12,470 <span>ft above sea level. But then, he goes down 80 ft to meet a fellow climber. So, this simply needs to be distracted:
12,470 ft - 80 ft = 12,390 ft
This is the elevation </span>above sea level at which he meet the other climber.
Answer: C
Explanation:
Production is expected that it will almost double by the end of the year is the answer because production in this context relates to a numerical quantity which is a function of time.
Therefore the probability there is on whether production will almost double to provide enough electricity and not if production will occur.