1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
9

Calculate the wavelength of the electromagnetic radiation required to excite an electron from the ground state to the level with

in a one-dimensional box 34.0 pm in length.
Physics
1 answer:
Novosadov [1.4K]3 years ago
4 0

The question is incomplete. The complete question is :

Calculate the wavelength of the electromagnetic radiation required to excite an electron from the ground state to the level with n = 6 in a one-dimensional box 34.0 pm in length.

Solution :  

In an one dimensional box, energy of a particle is given by :

$E=\frac{n^2h^2}{8ma^2}$

Here, h = Planck's constant

         n = level of energy

           = 6

         m = mass of particle

         a = box length

For n = 6, the energy associated is :

$\Delta E = E_6 - E_1 $

$\Delta E = \left( \frac{n_6^2h_2}{8ma^2}\right) - \left( \frac{n_1^2h_2}{8ma^2}\right) $

     $=\frac{h^2(n_6^2 - n_1^2)}{8ma^2}$

We know that,

$E = \frac{hc}{\lambda} $

Here, λ = wavelength

         h =  Plank's constant

         c = velocity of light

So the wavelength,

 $= \frac{hc}{E}$

 $=\frac{hc}{\frac{h^2(n_6^2 - n_1^2)}{8ma^2}}$

$=\frac{8ma^2c}{h(n_6^2 - n_1^2)}$

$=\frac{8 \times 9.109 \times 10^{-31}(0.34 \times 10^{-10})^2 (3 \times 10^8)}{6.626 \times 10^{-34} \times (36-1)}$

$= \frac{ 8 \times 9.109 \times 0.34 \times 0.34 \times 3 \times 10^{-43}}{6.626 \times 35 \times 10^{-34}}$

$=\frac{25.27 \times 10^{-43}}{231.91 \times 10^{-34}}$

$= 0.108 \times 10^{-9}$  m

= 108 pm

You might be interested in
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
4 years ago
A 1,700 kg car is being used to give a 1,400 kg car a push start by exerting a force of
Gwar [14]

Answer:

- 670 kg.m/s

Explanation:

Newton's third law states that to every action, there is equal and opposite reaction force. Since the force will be same but different in direction and acted in the same time then the impulses ( force multiply by time) of the two car be same in magnitude but different in direction - 670 kg.m/s

5 0
3 years ago
Two resistors, of R1 = 3.93 Ω and R2 = 5.59 Ω, are connected in series to a battery with an EMF of 24.0 V and negligible interna
son4ous [18]

Answer:

2.521 (A); 14.0924 (V)

Explanation:

more info in the attachment, the answers are marked with red colour.

4 0
3 years ago
The engine in an imaginary sports car can provide constant power to the wheels over a range of speeds from 0 to 70 miles per hou
puteri [66]

Answer:

t=5.3687\ s  is the time taken by the car to accelerate the desired range of the speed from zero at full power.

Explanation:

Given:

Range of speed during which constant power is supplied to the wheels by the car is 0\ mph\ to\ 70\ mph.

  • Initial velocity of the car, v_i=0\ mph
  • final velocity of the car during the test, v_f=32\ mph=14.3052\ m.s^{-1}
  • Time taken to accelerate form zero to 32 mph at full power, t=1.2\ s
  • initial velocity of the car, u_i=0\ mph
  • final desired velocity of the car, u_f=64\ mph=28.6105\ m.s^{-1}

Now the acceleration of the car:

a=\frac{v_f-v_i}{t}

a=\frac{14.3052-0}{1.2}

a=11.921\ m.s^{-1}

Now using the equation of motion:

u_f=u_i+a.t

64=0+11.921\times t

t=5.3687\ s is the time taken by the car to accelerate the desired range of the speed from zero at full power.

8 0
3 years ago
What happens to the gravitational force between two objects when their distance is changed?
kykrilka [37]
If they become closer, it is increased, and if the objects become farther away is decreased.
7 0
3 years ago
Other questions:
  • A tortoise can run with a speed of 0.14 m/s, and a hare can run 20 times as fast. In a race, they both start at the same time, b
    11·1 answer
  • The way to earn a college diploma is by?
    7·2 answers
  • Calculate the wavelength (in nm) of light that produces its first minimum at an angle of 21.0° when falling on a single slit of
    12·1 answer
  • The PVT behavior of a certain gas is described by the equation of state: P(V − b) = RT where b is a constant. If in addition CV
    10·1 answer
  • 1. What are the 3 spheres of Earth?
    12·1 answer
  • A car on a Ferris wheel has an angular displacement of π 4 rad, which corresponds to an arc length of 28.2 m. What is the Ferris
    11·1 answer
  • If a change is made to a system in equilibrium, the equilibrium will shift to oppose the change.
    9·2 answers
  • A wave travels one complete cycle in20sec and has wavelength of 1000mm.what is the speed​
    8·1 answer
  • Define 1 second time​
    8·2 answers
  • What an objects movement is slowing down it is called ____acceleration
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!