Answer:
−234.96
Step-by-step explanation:
Hope its the right answer that you're looking for :)
Using the binomial distribution, it is found that there is a 0.8295 = 82.95% probability that at least 5 received a busy signal.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 0.54% of the calls receive a busy signal, hence p = 0.0054.
- A sample of 1300 callers is taken, hence n = 1300.
The probability that at least 5 received a busy signal is given by:

In which:
P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4).
Then:






Then:
P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0009 + 0.0062 + 0.0218 + 0.0513 + 0.0903 = 0.1705.

0.8295 = 82.95% probability that at least 5 received a busy signal.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
Answer:
it would be 0.3 with bar notation
Step-by-step explanation:
Answer:
0
Step-by-step explanation:
0 because he grew 22 but the rabbit ate 25 which does not make sense
Answer:
A, C
Step-by-step explanation:
Actually, those questions require us to develop those equations to derive into trigonometrical equations so that we can unveil them or not. Doing it only two alternatives, the other ones will not result in Trigonometrical Identities.
Examining
A) True

Double angle 
B) False,
No further development towards a Trig Identity
C) True
Double Angle Sine Formula 

D) False No further development towards a Trig Identity
![[sin(x)-cos(x)]^{2} =1+sin(2x)\\ sin^{2} (x)-2sin(x)cos(x)+cos^{2}x=1+2sinxcosx\\ \\sin^{2} (x)+cos^{2}x=1+4sin(x)cos(x)](https://tex.z-dn.net/?f=%5Bsin%28x%29-cos%28x%29%5D%5E%7B2%7D%20%3D1%2Bsin%282x%29%5C%5C%20sin%5E%7B2%7D%20%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E%7B2%7Dx%3D1%2B2sinxcosx%5C%5C%20%5C%5Csin%5E%7B2%7D%20%28x%29%2Bcos%5E%7B2%7Dx%3D1%2B4sin%28x%29cos%28x%29)