Answer:
the conversion factor is f= 6 mol of glucose/ mol of CO2
Explanation:
First we need to balance the equation:
C6H12O6(s) + O2(g) → CO2(g) + H2O(l) (unbalanced)
C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(l) (balanced)
the conversion factor that allows to calculate the number of moles of CO2 based on moles of glucose is:
f = stoichiometric coefficient of CO2 in balanced reaction / stoichiometric coefficient of glucose in balanced reaction
f = 6 moles of CO2 / 1 mol of glucose = 6 mol of glucose/ mol of CO2
f = 6 mol of CO2/ mol of glucose
for example, for 2 moles of glucose the number of moles of CO2 produced are
n CO2 = f * n gluc = 6 moles of CO2/mol of glucose * 2 moles of glucose= 12 moles of CO2
Answer:
C₅H₁₀O₅
Explanation:
1. Calculate the mass of each element in 2.78 mg of X.
(a) Mass of C

(b) Mass of H

(c) Mass of O
Mass of O = 3.5 - 1.400 - 0.2349 = 1.87 g
2. Calculate the moles of each element

3. Calculate the molar ratios
Divide all moles by the smallest number of moles.

4. Round the ratios to the nearest integer
C:H:O = 1:2:1
5. Write the empirical formula
The empirical formula is CH₂O.
6. Calculate the molecular formula.
EF Mass = (12.01 + 2.016 + 16.00) u = 30.03 u
The molecular formula is an integral multiple of the empirical formula.
MF = (EF)ₙ

MF = (CH₂O)₅ = C₅H₁₀O₅
The molecular formula of X is C₅H₁₀O₅.
Answer:
2.3 * 10^-5
Explanation:
Recall that the solubility of a solute is the amount of solute that dissolves in 1 dm^3 or 1000cm^3 of solution.
Hence;
Amount of calcium oxalate = 154 * 10^-3/128.097 g/mol = 1.2 * 10^-3 mols
From the question;
1.2 * 10^-3 mols dissolves in 250 mL
x moles dissolves in 1000mL
x = 1.2 * 10^-3 mols * 1000/250
x= 4.8 * 10^-3 moldm^-3
CaC2O4(s) ------->Ca^2+(aq) + C2O4^2-(aq)
Hence Ksp = [Ca^2+] [C2O4^2-]
Where;
[Ca^2+] = [C2O4^2-] = 4.8 * 10^-3 moldm^-3
Ksp = (4.8 * 10^-3)^2
Ksp = 2.3 * 10^-5
Both figures are mixtures,
Figure II is a heterogenous mixture
Figure I is a homogenous mixture