The answer should be D. A rate law needs to be rate equaling the rate constant which is represented as k (make sure you use a lower case k since an upper case K is for equilibrium) times the concentrations of each reactant raised to the power of what ever order it has. (if A was a zero order it would be [A]⁰ and if A was third order it would be [A]³).
Do not get the order the reactants are confused with the coefficients in the chemical equation. (just because the reaction has 2B does not mean the rate law will have [B]². As shown in this example since it is first order therefore being [B] in the rate law)
I hope this helps. Let me know if anything is unclear in the comments.
Answer:
205 K (to 3 significant figures)
Explanation:
Assuming that 4 moles of the gas behaves like an ideal gas and obey the kinetic molecular theory.
Let's apply the ideal gas law, pV= nRT.
Here p denotes the pressure of the gas, V is for volume, n is the number of moles of the gas, R is the universal gas constant and T is the temperature.
Substitute the given information into the equation:
5.6 atm ×12 L= 4 mol ×R ×T
Since pressure is in atm and volume is in L, we can use R= 0.08206 L atm K⁻¹ mol⁻¹.
5.6 atm ×12 L= 4 mol ×0.08206 L atm K⁻¹ mol⁻¹ ×T
T= 67.2 ÷0.32824
T= 204.73 (5 s.f.)
T= 205 K (3 s.f.)
The reaction N2O4 (g) <--> 2NO2 (g) is endothermic, meaning that it consumes heat to move towards formation of the products.
According to Le Chatelier's Principle, therefore, if heat is added, more product (NO2) will be produced, and equilibrium would shift towards the right side. This is choice 3.
Answer: 5.39
Explanation: you are adding the balloon's volume and the container's volume