1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
3 years ago
13

PLEASE HEL0 :( 20 points!

Mathematics
1 answer:
Svet_ta [14]3 years ago
4 0

Answer:

a c b and f

Step-by-step explanation:

You might be interested in
Find the geometric mean between each pair of numbers..<br> 25 and 16
Diano4ka-milaya [45]

Answer:

20

Step-by-step explanation

√(25)(16)

4 0
3 years ago
(b) For a giveaway, a local radio station is putting together goodie bags. The bags will include tickets and posters. Each bag w
jolli1 [7]
 6 goodie bags. 6 is the greatest common factor of 54 and 36.

<span>9 tickets and 6 posters in each bag.</span>
3 0
4 years ago
Will mark as brainliest plz help​
RUDIKE [14]

Answer:

30 is answer bro

Step-by-step explanation:

hope it wI'll help u

5 0
3 years ago
Read 2 more answers
The histogram below shows the distribution of times, in minutes, required for 25 rats in an animal behavior experiment to naviga
tino4ka555 [31]

Answer:

c. The <em>median</em> and the IQR <em>(Interquartile range)</em>.

Step-by-step explanation:

Considering the histogram for the distribution of times for this experiment (see the graph below), we can notice that this distribution is skewed positively because of "<em>a few scores creating an elongated tail at the higher end of the distribution</em>" (Urdan, 2005). There is also a probable outlier (an animal that navigates around nine minutes). An outlier is an extreme value that is more than two standard deviations below or above the mean.

In these cases, when we have <em>skewed and extreme</em> <em>values</em> in a distribution, it is better to avoid using the <em>mean and standard deviations</em> as measures of central <em>tendency</em> and <em>dispersion</em>, respectively. Instead, we can use the <em>median</em> and the <em>interquartile range</em> for those measures.

With skewed distributions, the mean is more "sensible" to extreme data than the median, that is, it tends to not represent the most appropriate measure for central position <em>(central tendency)</em> in a distribution since in a positively skewed distribution like the one of the question, the mean is greater than the <em>median</em>, that is, <em>the extreme values tend to pull the mean to them</em>, so the mean tends to not represent a "reliable" measure for the central tendency of all the values of the experiments.

We have to remember that the dispersion measures such as the <em>standard deviation</em> and <em>interquartile range</em>, as well as the <em>variance</em> and <em>range</em>, provide us of measures that tell us <em>how spread the values are in a distribution</em>.

Because the <em>standard deviation depends upon the mean</em>, i.e., to calculate it we need to subtract each value or score from the mean, square the result, divide it by the total number of scores and finally take the square root for it, we have to conclude that with an inappropriate mean, <em>the standard deviation is not a good measure for the dispersion of the data, </em>in this case (a positively skewed distribution).

Since the median represents a central tendency measure in which 50% of the values for distribution falls below and above this value, no matter if the distribution is skewed, the median is the best measure to describe the center of the distribution in this case.

Likewise, the <em>quartiles</em> are not affected by <em>skewness</em>, since they represent values of the distribution for which there is a percentage of data below and above it. For example, the first quartile (which is also the 25th percentile) splits the lowest 25% of the data from the highest 75% of them, and the third quartile, the highest 25%, and the lowest 75%. In other words, those values do not change, no matter the extreme values or skewness.

For these reasons, we can say that the median and the interquartile range (IQR) describe the center and the spread for the distribution presented, and not the most usual measures such as the mean and standard deviation.

5 0
3 years ago
How can 1% of 300 be used to determine 64% of 300? Enter your answers in the boxes to correctly complete the statement. 1% of 30
Ratling [72]

Answer:

1% of 300 is 3 so if you multiply that 3 by 64, you get 192 which is also 64% of 300

Step-by-step explanation:

.01 x 300 = 3

3 x 64 = 192

.64 x 300 = 192

4 0
3 years ago
Read 2 more answers
Other questions:
  • 0.2099 to 2 decimal places
    9·2 answers
  • 6. At a school supply store, the price of three
    11·2 answers
  • 5. Given the following triangle side lengths, identify the triangle as acute, right or obtuse. Show your work. a. 3in, 4in, 5 in
    8·2 answers
  • A box in the shape of a rectangular prism has a length of 3 inches, a width of 2 inches,
    10·1 answer
  • What is the mean absolute deviation of the data set? 8, 5, 12, 4, 5, 8, 7
    12·1 answer
  • Frank scored 75% on his spelling test with 40 questions. How many questions did he get right ?
    14·2 answers
  • HELP PLEASE!! NUMBER 6!!
    11·1 answer
  • Identify each pair of angles as corresponding, alternate interior, alternate exterior, or consecutive interior.
    6·1 answer
  • Would this equal 0 (zero): (put yes/no as your answer)
    15·1 answer
  • Help!!,!, please
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!