I also posted this answer on your previous question
Answer:
sorry the question isn't obvious at all, can you please rectify?
Μ = (0×0.026) + (1×0.072) +(2×0.152) + (3×0.303) + (4×0.215) + (5×0.164) + (6×0.066)
μ = 0 + 0.072 + 0.304 + 0.909 + 0.86 + 0.82 + 0.396
μ = 3.361 ≈ 3.4
We need the value of ∑X² to work out the variance
∑X² = (0²×0.026) + (1²×0.072) + (2²×0.152) + (3²×0.303) + (4²×0.215) + (5²×0.164) + (6²×0.066)
∑X² = 0+0.072+0.608+2.727+3.44+4.1+2.376
∑X² = 13.323
Variance = ∑X² - μ²
Variance = 13.323 - (3.4)² = 1.763 ≈ 2
Standard Deviation = √Variance = √1.8 = 1.3416... ≈ 1.4
The correct answer related to the value of mean and standard deviation is the option D
<span>
An employee works an average of 3.4 overtime hours per week with a standard deviation of approximately 1.4 hours.</span>
Answer:
False
Step-by-step explanation:
It makes no sense......
Answer:
A, B, D, F
Step-by-step explanation:
Matrix operations require that the matrix dimensions make sense for the operation being performed.
Matrix multiplication forms the dot product of a row in the left matrix and a column in the right matrix. That can only happen if those vectors have the same dimension. That is the number of columns in the left matrix must equal the number of rows in the right matrix.
Matrix addition or subtraction operates on corresponding terms, so the matrices must have the same dimension.
The transpose operation interchanges rows and columns, so reverses the dimension numbers. It is a defined operation for any size matrix.
<h3>Defined operations</h3>
A. CA ⇒ (4×7) × (7×2) . . . . defined
B. B -A ⇒ (7×2) -(7×2) . . . . defined
C. B -C ⇒ (7×2) -(4×7) . . . undefined
D. AB' ⇒ (7×2) × (2×7) . . . . defined
E. AC ⇒ (7×2) × (4×7) . . . undefined
F. C' ⇒ (7×4) . . . . defined