Step-by-step explanation:
Solve for xsin3⁡x+cos3⁡x=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">xsin3x+cos3x=1xsin3x+cos3x=1
sin3⁡x+cos3⁡x=1(sin⁡x+cos⁡x)(sin2⁡x−sin⁡x⋅cos⁡x+cos2⁡x)=1(sin⁡x+cos⁡x)(1−sin⁡x⋅cos⁡x)=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">sin3x+cos3x=1(sinx+cosx)(sin2x−sinx⋅cosx+cos2x)=1(sinx+cosx)(1−sinx⋅cosx)=1
Answer:
x≈ 3.2056
Step-by-step explanation:
Set both sides by log. Then, solve for x.
1. 14^(x + 1) = 36
(x + 1)log(14) = log(36)
x + 1 = log(36)/log(14) . . . Divide both sides by log(14)
x = log(36)/log(14) - 1 . . . . Subtract both sides by 1.
x ≈ 0.3579 . . . . . . . . . . . .Use calculator to simplify the expression.
Note that the second problem is similar to the first.
2. 12^(y - 2) = 20
(y - 2)log(12) = log(20)
y - 2 = log(20)/log(12)
y = log(20)/log(12) + 2
y ≈ 3.2056
Answer: 8+18W
Step-by-step explanation:
1. First multiply the 4 by 2, equalling 8.
2. Then multiply the 9W by 2, equalling 18W.
3. 8 and 18W are unlike terms, so they can not be added together.
4. The answer would stay as 8+18W.
B. As the x-values increase, the y- valuebtend to decrease.
Hello!




Answer: (c) An irrational number
Good luck! :)