24 units by 15 units. divide both numbers by 5
Please provide a square, thank you !!!
The statement that -6 is in the domain of f(g(x)) is true
<h3>Complete question</h3>
If f(x) = -2x + 8 and g(x) =
, which statement is true?
- -6 is in the domain of f(g(x))
- -6 is not in the domain of f(g(x))
<h3>How to determine the true statement?</h3>
We have:
f(x) = -2x + 8

Start by calculating the function f(g(x)) using:
f(g(x)) = -2g(x) + 8
Substitute 

Set the radicand to at least 0

Subtract 9 from both sides

This means that the domain of f(g(x)) are real numbers greater than or equal to -9. i.e. -9, -8, -7, -6, ...........
Hence, the statement that -6 is in the domain of f(g(x)) is true
Read more about domain at:
brainly.com/question/24539784
#SPJ1
Answer:
11.25
Step-by-step explanation:
13.79-x
Let x= 2.54
13.79-2.54
11.25
Answer:
1. x^4 -x^3 -4x^2 -3
a1 = -7.4
an = an-1 -13.8 (choice 1)
Step-by-step explanation:
f(x) = x^4 -x^2 +9
g(x) = x^3 +3x^2 +12
We are subtracting
f(x) -g(x) =x^4 -x^2 +9 - ( x^3 +3x^2 +12)
Distribute the minus sign
x^4 -x^2 +9 - x^3 -3x^2 -12
I like to line them up vertically
x^4 -x^2 +9
- x^3 -3x^2 -12
-------------------------
x^4 -x^3 -4x^2 -3
2. a1 = -7.4
To find the common difference, take term 2 and subtract term 1
-21.2 - (-7.4)
-21.2 + 7.4
-13.8
an = an-1 -13.8