Answer:
Gravitational force of attraction G(f) = 2.44 x 10⁻⁷ (approx.)
Explanation:
Given:
Mass M1 = 26 kg
Mass M2 = 5.1 kg
Distance r = 0.19 m
Find:
Gravitational force of attraction G(f)
Computation:
Gravitational force of attraction G(f) = G(m1)(m2)/r²
Gravitational force of attraction G(f) = [6.67 x 10⁻¹¹](26)(5.1)/(0.19)²
Gravitational force of attraction G(f) = 8.84 x 10⁻⁹ / 0.0361
Gravitational force of attraction G(f) = 2.44 x 10⁻⁷ (approx.)
Answer: 37.5grams of Cu(NO3)2
Cu(1mol) + 2HNO3(2mol) —> Cu(NO3)2 + H2
<em>125 grams of Cu(1mol) reacts with 75 grams of HNO3(2mol)</em>
<em><u>HNO3 is the limiting substance, therefore, 75 grams is the limiting quantity.</u></em>
<em>Therefore, 2mol of HNO3 forms 1mol of Cu(NO3)2</em>
<em>75 grams of HNO3 forms...75grams x 1mol/2mol = 37.5 grams of Cu(NO3)2</em>
Answer:
Explanation:
k stand for equilibrium constants in terms of reaction
The higher the value of an equilibrium constant the faster the equilibrium reaction comes to completion.
Consider the example below:
⇄
where
For a faster reaction the numerator i.e. the right hand side of the equation have to be higher than the left hand side (the denominator). therefore the higher the numerator, the higher the value of the equilibrium constant and the faster the reaction get to completion thus option c is correct.
Answer:
No.
Explanation:
No organism can detect X-rays or radio waves