Answer:
-12162.47 joules (or -12000 joules when accounting for significant figures)
Explanation (btw I used 1 cal as 4.184 joules because SI units are better):
q = m c delta T
q = (70.9) (4.184) (25 - 66)
q = (70.9) (4.184) (-41)
q = -12162.47 joules
Answer: I believe it is B
Answer: option D. the ability of a base to react with a soluble metal salt.
Justification:
NaOH is a strong base, which means that in water it will dissociate according to this reaction:
- NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
On the other hand, CuSO₄ is a soluble ionic salt which in water will dissociate into its ions according to this other reaction:
Hence, in solution, the sodium ion (Na⁺) will react with the metal salt in a double replacement reaction, where the highly reactive sodium ion (Na⁺) will substitute the Cu²⁺ in the CuSO₄ to form the sodium sulfate salt, Na₂SO₄ (water soluble), and the copper(II) hydroxide, Cu(OH)₂ (insoluble).
That is what the given reaction represents:
CuSO₄ (aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
↑ ↑ ↑ ↑
soluble metal salt strong base insoluble base solube salt
Answer:
CaCO3 is false
Explanation:
Because HCl is hydrongen chloride
Answer: The approximate equilibrium partial pressure of
is 3.92 atm
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.
The given balanced equilibrium reaction is,

![K_p=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
![1.5\times 10^{-5}=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=1.5%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
On reversing the reaction:

initial pressure 4.00atm 2.00 atm 0
eqm (4.00-2x)atm (2.00-x) atm 2x atm
![K_p=\frac{[H_2S]^2}{[H_2]^2\times [S_2]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D)


![0.67\times 10^5=\frac{2x]^2}{[4.00-2x]^2\times [2.00-x]}](https://tex.z-dn.net/?f=0.67%5Ctimes%2010%5E5%3D%5Cfrac%7B2x%5D%5E2%7D%7B%5B4.00-2x%5D%5E2%5Ctimes%20%5B2.00-x%5D%7D)

![[H_2S]=2x=2\times 1.96=3.92 atm](https://tex.z-dn.net/?f=%5BH_2S%5D%3D2x%3D2%5Ctimes%201.96%3D3.92%20atm)
Thus approximate equilibrium partial pressure of
is 3.92 atm