The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
An orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy.
Explanation:
The only true statement from the given options is that "an orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy." Inner orbitals which are also known to contain core electrons feels the bulk of the nuclear pull on them compared to the outermost orbitals containing the valence electrons.
- The nuclear pull is the effect of the nucleus pulling and attracting the electrons in orbitals.
- This pull is stronger for inner orbitals and weak on the outer ones.
- The outer orbitals are said to be well shielded from the pull of the nuclear charge.
- Also, based on the quantum theory, electrons in the outer orbitals have higher energies because they occupy orbitals at having higher energy value.
Learn more:
brainly.com/question/1832385
#learnmoreBrainly
Answer:
Explanation:
a ) false.
NH₃ is more polar molecule than PH₃ so inter-molucular attraction is greater in NH₃ ( hydrogen bond ) . Hence vapour pressure is low for NH₃ .
b ) false .
The average kinetic energy of boiling water molecules is lower on a mountaintop than it is at sea level. It is so because water boils at lower temperture on mountain and kinetic energy of molecules depends upon temperature .
c ) false
vapour pressure depends upon temperature .
d ) True
CCl4 is more volatile than CBr4
e ) false
vapour pressure increases as temperature increases.
Gallium ( Ga ) is the answer
Answer:
1.070MKCl
Explanation:
So we know that the original formula is M= n/L (n being moles of solute, L being liters of solvent)
Since we do not have liters in this problem, we would need to convert milliliters to liters
<u>213 mL= 0.213 L</u>
We then see that we do not have moles, but we do have a mass, being <u>17.0 g.</u> we would need to convert these grams to moles, giving us <u>0.228 mol.</u>
Then, you would plug in <u>0.228 for your n</u>, and now you are ready to solve your original formula, plugging everything in.
M=n/L
M=0.228 mol/0.213L
M= 1.070MKCl
I know this was long, but I hope this helps (: