Answer:
y = 90°
Step-by-step explanation:
The left side base angle of the triangle and the angle of 110° form a straight angle and are supplementary, thus
base angle = 180° - 110° = 70°
The right base angle is also 70° , thus the triangle is isosceles
The line segment from the vertex is a perpendicular bisector, hence
y = 90°
1 batch ice cream = 3/8 lb chocolate
4 batches ice cream=
=4(3/8)
=(4*3)/8
=12/8
=1 1/2 pounds of chocolate needed to make 4 batches of ice cream
Hope this helps! :)
Resolviendo el sistema de ecuaciones veremos que:
- niña = 23kg
- niño = 28kg
- perro = 18kg.
<h3>
¿Como resolver el sistema de ecuaciones?</h3>
Aqui tenemos el sistema de ecuaciones:
Niña + niño = 51kg
Niño + perro = 46 kg
Niña + perro = 41kg
Para resolver esto, lo primero que debemos hacer es aislar una variable en una de las ecuaciones, por ejemplo, podriamos aislar "perro" en la tercera:
perro = 41kg - niña
Ahora reemplazamos eso en la segunda para obtener:
niño + (41kg - niña) = 46kg
niño - niña = 46kg - 41kg = 5kg
niño = niña + 5kg
Ahora logramos obtener la variable "niño" en terminos de la variable "niña". Podemos reemplazar esto en la primera ecuacion del sistema.
niña + niño = 51kg
niña + (niña + 5kg) = 51kg
2*niña = 51kg - 5kg = 46kg
niña = 46kg/2 = 23kg.
Ahora que sabemos esto, usamos las otras ecuaciones para encontrar el peso del niño y el perro:
niño = niña + 5kg = 23kg + 5kg = 28kg
perro = 41kg - niña = 41kg - 23kg = 18kg.
Sí quieres aprender más sobre sistemas de ecuaciones, puedes leer:
brainly.com/question/17174746
Answer:
The probability of selecting a non-defective part provided by supplier A is 0.807.
Step-by-step explanation:
Let <em>A</em> = a part is supplied by supplier A, <em>B</em> = a part is supplied by supplier B and <em>D</em> = a part is defective.
<u>Given</u>:
P (D|A) = 0.05, P(D|B) = 0.09
A supplies four times as many parts as B, i.e. n (A) = 4 and n (B) = 1.
Then the probability of event <em>A</em> and <em>B</em> is:

Compute the probability of selecting a defective product:

The probability of selecting a non-defective part provided by supplier A is:

Thus, the probability of selecting a non-defective part provided by supplier A is 0.807.