Answer:
Re=309926.13
Explanation:
density=92.8lbm/ft3*(0.45kg/1lbm)*(1ft3/0.028m3)=1491.43kg/m3
viscosity=4.1cP*((1*10-3kg/m*s)/1cP)=0.0041kg/m*s
velocity=237ft/min*(1min/60s)*(0.3048m/1ft)=1.2m/s
diameter=28inch*(0.0254m/1inch)=0.71m
Re=(density*velocity*diameter)/viscosity=(1491.43kg/m3*1.2m/s*0.71m)/0.0041kg/m*s
Re=309926.13
Answer is: pH of aniline is 9.13.<span>
Chemical reaction: C</span>₆H₅NH₂(aq)+
H₂O(l) ⇌ C₆H₅NH₃⁺(aq) + OH⁻(aq).
pKb(C₆H₅NH₂) = 9.40.
Kb(C₆H₅NH₂) = 10∧(-9.4) = 4·10⁻¹⁰.
c₀(C₆H₅NH₂) = 0.45 M.
c(C₆H₅NH₃⁺) = c(OH⁻) = x.
c(C₆H₅NH₂) = 0.45 M - x.
Kb = c(C₆H₅NH₃⁺) · c(OH⁻) / c(C₆H₅NH₂).
4·10⁻¹⁰ = x² / (0.45 M - x).
Solve quadratic equation: x = c(OH⁻) = 0.0000134 M.
pOH = -log(0.0000134 M.) = 4.87.
pH = 14 - 4.87 = 9.13.
Answer:
The answer to your question is 88.7 ml
Explanation:
Data
Volume = ?
Concentration of NaOH = 0.142 M
Volume of H₂C₄H₄O₆ = 21.4 ml
Concentration of H₂C₄H₄O₆ = 0.294 M
Balanced chemical reaction
2 NaOH + H₂C₄H₄O₆ ⇒ Na₂C₄H₄O₆ + 2H₂O
1.- Calculate the moles of H₂C₄H₄O₆
Molarity = moles/volume
Solve for moles
moles = Molarity x volume
Substitution
moles = 0.294 x 21.4/1000
Result
moles = 0.0063
2.- Use proportions to calculate the moles of NaOH
2 moles of NaOH ------------------ 1 moles of H₂C₄H₄O₆
x ------------------ 0.0063 moles
x = (0.0063 x 2) / 1
x = 0.0126 moles of NaOH
3.- Calculate the volume of NaOH
Molarity = moles / volume
Solve for volume
Volume = moles/Molarity
Substitution
Volume = 0.0126/0.142
Result
Volume = 0.088 L or 88.7 ml
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
Answer:
half-life = 3.8 days
total time of decay = 15.2 days
initial amount = 100. g
number of half-lives past: 15.2/3.8 = 4 half-lives
4 half-lives = 1/16 remains
100. g x 1/16 = 6.25 g