Answer:
The probability that the diameter falls in the interval from 2499 psi to 2510 psi is 0.00798.
Step-by-step explanation:
Let's define the random variable,
"Comprehensive strength of concrete". We have information that
is normally distributed with a mean of 2500 psi and a standard deviation of 50 psi (or a variance of 2500 psi). In other words,
.
We want to know the probability of the mean of X or
that falls in the interval
. From inference theory we know that :

Now we can find the probability as follows:

Where
, then:

Can you please tell me your question?
Answer:
Oh gosh. Im not positive but I think it would be 43:25. Please dont get mad at me if its wrong!
Step-by-step explanation:
I am so sorry if its wrong but im not very sure :-(
The only way 3 digits can have product 24 is
1 x 3 x 8 = 241 x 4 x 6 = 242 x 2 x 6 = 242 x 3 x 4 = 24
So the digits comprises of 1,3,8 or 1,4,6, or 2,2,6, or 2,3,4
To be divisible by 3 the sum of the digits must be divisible by 3.
1+ 3+ 8=12, 1+ 4+ 6= 11, 2 +2 + 6=10, 2 +3 + 4=9Of those sums of digits, only 12 and 9 are divisible by 3.
So we have ruled out all but integers whose digits consist of1,3,8, and 2,3,4.
Meanwhile they must be odd they either must end in 1 or 3.
The only ones which can end in 1 are 381 and 831.
The others must end in 3.
They must be greater than 152 which is 225. So the
First digit cannot be 1. So the only way its digits can contain of1,3,8 and close in 3 is to be 813.
The rest must contain of the digits 2,3,4, and the only way they can end in 3 is to be 243 or 423.
So there are precisely five such three-digit integers: 381, 831, 813, 243, and 423.
Answer:
no
Step-by-step explanation:
no they are not they are hard