Answer : The final temperature of the mixture is 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 
= specific heat of water = 
= mass of iron = 39.9 g
= mass of water = 
= final temperature of mixture = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
1. True 2. False 3.false 4. False 5. True
The law of conservation of mass applies to every reaction. In this case, you start with 1 Mg, 2 H, and 2CL and end up with the same five only their bonds have been rearranged, or in other words, they are joined up differently.