Answer:
n = 7.86 mol
Explanation:
This question can be solved using the ideal gas law of PV = nRT.
Temperature must be in K, so we will convert 22.5C to 295 K ( Kelvin = C + 273).
R is the ideal gas constant of 0.0821.
(2.24atm)(85.0L) = n(0.0821)(295K)
Isolate n to get:
n = (2.24atm)(85.0L)/(0.0821)(295K)
n = 7.86 mol
Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.
Accelerate, decelerate, and changing directions.
Answer:
<h3>
Which of the following increases with the increase in the temperature in case of a liquid?</h3><h2>
<em>Va</em><em>pour</em><em> </em><em> </em><em>Pressure</em><em> </em></h2>
Explanation:
When a closed container contains liquid, higher the temperature, higher the evaporation the evaporation will be.
So Vapour Pressure should be the correct answer.
Answer:
230.3 kJ
Some chemical reactions show release of heat while some show absorption of heat. On these bases, the reaction is classified as either endothermic or exothermic. Negative sign of ΔH means exothermic reaction.